Cooling electronic chips to satisfy the ever-increasing heat transfer demands of the electronics industry is a perpetual challenge. One approach to addressing this is through improving the heat rejection ability of air-cooled heat sinks, and nonlocal thermal-fluid-solid modeling based on volume averaging theory (VAT) has allowed for significant strides in this effort. A number of optimization methods for heat sink designers who model heat sinks with VAT can be envisioned due to VAT's singular ability to rapidly provide solutions, when compared to computational fluid dynamics (CFD) approaches. The particle swarm optimization (PSO) method appears to be an attractive multiparameter heat transfer device optimization tool; however, it has received very little attention in this field compared to its older population-based optimizer cousin, the genetic algorithm (GA). The PSO method is employed here to optimize smooth and scale-roughened straight-fin heat sinks modeled with VAT by minimizing heat sink thermal resistance for a specified pumping power. A new numerical design tool incorporates the PSO method with a VAT-based heat sink solver. Optimal designs are obtained with this new tool for both types of heat sinks, the performances of the heat sink types are compared, the performance of the PSO method is discussed with reference to the GA method, and it is observed that this new method yields optimal designs much quicker than traditional approaches. This study demonstrates, for the first time, the effectiveness of combining a VAT-based nonlocal thermal-fluid-solid model with population-based optimization methods, such as PSO, to design heat sinks for electronics cooling applications. The VAT-based nonlocal modeling method provides heat sink design capabilities, in terms of solution speed and model rigor, that existing modeling methods do not match.

References

1.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
2.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley, Reading
,
MA
.
3.
Queipo
,
N.
,
Devarakonda
,
R.
, and
Humphrey
,
J. A. C.
,
1994
, “
Genetic Algorithms for Thermosciences Research: Application to the Optimized Cooling of Electronic Components
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
893
908
.10.1016/0017-9310(94)90215-1
4.
Manivannan
,
S.
,
Devi
,
S. P.
, and
Arumugam
,
R.
, “
Optimization of Flat Plate Heat Sink Using Genetic Algorithm
,”
Proceedings of 2011 1st International Conference on Electrical Energy Systems (ICEES)
, pp.
78
81
.
5.
Mohsin
,
S.
,
Maqbool
,
A.
, and
Khan
,
W. A.
,
2009
, “
Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
44
52
.10.1109/TCAPT.2008.2004412
6.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2009
, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
(
19-20
), pp.
4317
4326
.10.1016/j.ijheatmasstransfer.2009.03.069
7.
Fabbri
,
G.
,
2000
, “
Heat Transfer Optimization in Corrugated Wall Channels
,”
Int. J. Heat Mass Transfer
,
43
(
23
), pp.
4299
4310
.10.1016/S0017-9310(00)00054-5
8.
Jian-hui
,
Z.
,
Chun-xin
,
Y.
, and
Li-na
,
Z.
,
2009
, “
Minimizing the Entropy Generation Rate of the Plate-Finned Heat Sinks Using Computational Fluid Dynamics and Combined Optimization
,”
Appl. Therm. Eng.
,
29
(
8-9
), pp.
1872
1879
.10.1016/j.applthermaleng.2008.08.001
9.
Wildi-Tremblay
,
P.
, and
Gosselin
,
L.
,
2007
, “
Layered Porous Media Architecture for Maximal Cooling
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
464
478
.10.1016/j.ijheatmasstransfer.2006.07.031
10.
Tye-Gingras
,
M.
, and
Gosselin
,
L.
,
2008
, “
Thermal Resistance Minimization of a Fin-and-Porous-Medium Heat Sink With Evolutionary Algorithms
,”
Numer. Heat Transfer, Part A
,
54
(
4
), pp.
349
366
.10.1080/10407780802148481
11.
Leblond
,
G.
, and
Gosselin
,
L.
,
2008
, “
Effect of Non-Local Equilibrium on Minimal Thermal Resistance Porous Layered Systems
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
281
291
.10.1016/j.ijheatfluidflow.2007.06.007
12.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Networks
, Vol. 1944, pp.
1942
1948
.
13.
Eberhart,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS '95
, pp.
39
43
.
14.
Eberhart
,
R.
, and
Shi
,
Y.
,
1998
, “
Comparison Between Genetic Algorithms and Particle Swarm Optimization
,”
Evolutionary Programming VII
,
V.
Porto
,
N.
Saravanan
,
D.
Waagen
, and
A.
Eiben
, eds.,
Springer
,
Berlin
, pp.
611
616
.
15.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
2000
, “
Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization
,”
Proceedings of the 2000 Congress on Evolutionary Computation
, Vol.
81
, pp.
84
88
.
16.
Eberhart
, and
Yuhui
,
S.
,
2001
, “
Particle Swarm Optimization: Developments, Applications and Resources
,”
Proceedings of the 2001 Congress on Evolutionary Computation
, Vol.
81
, pp.
81
86
.
17.
Shi
,
Y.
, and
Eberhart
,
R. C.
,
1999
, “
Empirical study of particle swarm optimization
,”
Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99
, Vol.
1953
, p.
1950
.
18.
Xiaohui
,
H.
, and
Eberhart
,
R.
,
2002
, “
Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization
,”
Proceedings of the 2002 Congress on Evolutionary Computation, CEC '02
, pp.
1677
1681
.
19.
Xiaohui
,
H.
,
Eberhart
,
R. C.
, and
Yuhui
,
S.
,
2003
, “
Particle Swarm With Extended Memory for Multiobjective Optimization
,”
Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS '03
, pp.
193
197
.
20.
Bureerat
,
S.
, and
Srisomporn
,
S.
,
2010
, “
Optimum Plate-Fin Heat Sinks by Using a Multi-Objective Evolutionary Algorithm
,”
Eng. Optim.
,
42
(
4
), pp.
305
323
.10.1080/03052150903143935
21.
Kanyakam
,
S.
, and
Bureerat
,
S.
,
2011
, “
Multiobjective Evolutionary Optimization of Splayed Pin-Fin Heat Sink
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
4
), pp.
553
565
.
22.
Kanyakam
,
S.
, and
Bureerat
,
S.
,
2012
, “
Multiobjective Optimization of a Pin-Fin Heat Sink Using Evolutionary Algorithms
,”
J. Electron. Packag.
,
134
(
2
), pp.
021008
021008
.10.1115/1.4006514
23.
Xiong
,
Q.
,
Li
,
B.
,
Chen
,
F.
,
Ma
,
J.
,
Ge
,
W.
, and
Li
,
J.
,
2010
, “
Direct Numerical Simulation of Sub-Grid Structures in Gas–Solid Flow—GPU Implementation of Macro-Scale Pseudo-Particle Modeling
,”
Chem. Eng. Sci.
,
65
(
19
), pp.
5356
5365
.10.1016/j.ces.2010.06.035
24.
Xiong
,
Q.
,
Li
,
B.
,
Zhou
,
G.
,
Fang
,
X.
,
Xu
,
J.
,
Wang
,
J.
,
He
,
X.
,
Wang
,
X.
,
Wang
,
L.
,
Ge
,
W.
, and
Li
,
J.
,
2012
, “
Large-Scale DNS of Gas–Solid Flows on Mole-8.5
,”
Chem. Eng. Sci.
,
71
(
0
), pp.
422
430
.10.1016/j.ces.2011.10.059
25.
Xiong
,
Q.
,
Deng
,
L.
,
Wang
,
W.
, and
Ge
,
W.
,
2011
, “
SPH method for Two-Fluid Modeling of Particle–Fluid Fluidization
,”
Chem. Eng. Sci.
,
66
(
9
), pp.
1859
1865
.10.1016/j.ces.2011.01.033
26.
Catton
,
I.
,
2011
, “
Conjugate Heat Transfer Within a Heterogeneous Hierarchical Structure
,”
J. Heat Transfer
,
133
(
10
),
p. 103001
.10.1115/1.4003576
27.
Anderson
,
T. B.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds. Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.10.1021/i160024a007
28.
Slattery
,
J. C.
,
1967
, “
Flow of Viscoelastic Fluids Through Porous Media
,”
AIChE J.
,
13
(
6
), pp.
1066
1071
.10.1002/aic.690130606
29.
Marle
,
C. M.
,
1967
, “
Ecoulements monophasiques en milieu poreux
,”
Rev. Inst. Francais du Petrole
,
22
, pp.
1471
1509
.
30.
Whitaker
,
S.
,
1967
, “
Diffusion and Dispersion in Porous Media
,”
AIChE J.
,
13
(
3
), pp.
420
427
.10.1002/aic.690130308
31.
Zolotarev
,
P. P.
, and
Radushkevich
,
L. V.
,
1968
, “
An Approximate Analytical Solution of the Internal Diffusion Problem of Dynamic Absorption in the Linear Region of an Isotherm
,”
Russ. Chem. Bull.
,
17
(
8
), pp.
1818
1820
.10.1007/BF01169912
32.
Slattery
,
J. C.
,
1980
,
Momentum, Energy and Mass Transfer in Continua
,
Krieger
,
Malabar, FL
.
33.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer, New York
.
34.
Gray
,
W. G.
,
Leijnse
,
A.
,
Kolar
,
R. L.
, and
Blain
,
C. A.
,
1993
,
Mathematical Tools for Changing Spatial Scales in the Analysis of Physical Systems
,
CRC Press
,
Boca Raton, FL
.
35.
Whitaker
,
S.
,
1977
, “
Simultaneous Heat, Mass and Momentum Transfer in Porous Media: A Theory of Drying
,”
Adv. Heat Transfer
,
13
, pp.
119
203
.10.1016/S0065-2717(08)70223-5
36.
Whitaker
,
S.
,
1997
, “
Volume Averaging of Transport Equations
,”
Int. Ser. Adv. Fluid Mech.
,
13
, pp.
1
60
.
37.
Kheifets
,
L. I.
, and
Neimark
,
A. V.
,
1982
,
Multiphase Processes in Porous Media
,
Khimia
,
Moscow
.
38.
Dullien
,
F. A. L.
,
1979
,
Porous Media Fluid Transport and Pore Structure
,
Academic Press
,
New York
.
39.
Adler
,
P. M.
,
1992
,
Porous Media: Geometry and Transports
,
Butterworth-Heinemann
,
Waltham, MA
.
40.
Travkin
,
V.
, and
Catton
,
I.
,
1992
,
Fundamentals of Heat Transfer in Porous Media
, HTD Vol.
193
,
ASME
,
New York
.
41.
Travkin
,
V.
, and
Catton
,
I.
,
1995
, “
A Two-Temperature Model for Turbulent Flow and heat Transfer in a Porous Layer
,”
J. Fluids Eng.
,
117
(
1
), pp.
181
188
.10.1115/1.2816810
42.
Travkin
,
V. S.
, and
Catton
,
I.
,
1998
, “
Porous Media Transport Descriptions—Non-Local, Linear and Non-Linear Against Effective Thermal/Fluid Properties
,”
Adv. Colloid Interface Sci.
,
76-77
(
0
), pp.
389
443
.10.1016/S0001-8686(98)00054-2
43.
Travkin
,
V. S.
,
Catton
,
I.
, and
Gratton
,
L.
,
1993
,
Heat Transfer in Porous Media
, HTD Vol.
240
,
ASME
,
New York
.
44.
Travkin
,
V. S.
,
Catton
,
I.
,
Hu
,
K.
,
Ponomarenko
,
A. T.
, and
Shevchenko
,
V. G.
,
1999
,
Application of Porous Media Methods for Engineered Materials
, AMD Vol.
233
,
ASME
,
New York
.
45.
Nakayama
,
A.
,
Ando
,
K.
,
Yang
,
C.
,
Sano
,
Y.
,
Kuwahara
,
F.
, and
Liu
,
J.
,
2009
, “
A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media
,”
Heat Mass Transfer
,
45
(
11
), pp.
1365
1372
.10.1007/s00231-009-0513-x
46.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A General Macroscopic Turbulence Model for Flows in Packed Beds, Channels, Pipes, and Rod Bundles
,”
J. Fluids Eng.
,
130
(
10
), p.
101205
.10.1115/1.2969461
47.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Hayashi
,
T.
,
2004
, “
Numerical Modelling for Three-Dimensional Heat and Fluid Flow Through a Bank of Cylinders in Yaw
,”
J. Fluid Mech.
,
498
, pp.
139
159
.10.1017/S0022112003006712
48.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Kodama
,
Y.
,
2006
, “
An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium
,”
J. Fluid Mech.
,
563
(
1
), pp.
81
96
.10.1017/S0022112006001078
49.
Travkin
,
V. S.
, and
Catton
,
I.
,
2001
, “
Transport Phenomena in Heterogeneous Media Based on Volume Averaging Theory
,”
Advances in Heat Transfer
,
G. G.
Hari
, and
A. H.
Charles
, eds.,
Elsevier
,
New York
, pp.
1
144
.
50.
Geb
,
D.
,
Zhou
,
F.
,
DeMoulin
,
G.
, and
Catton
,
I.
,
2013
, “
Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory
,”
ASME J. Heat Transfer
,
135
(
8
), pp.
082602
082602
.10.1115/1.4024091
51.
Zhou
,
F.
,
DeMoulin
,
G. W.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2012
, “
Closure for a Plane Fin Heat Sink With Scale-Roughened Surfaces for Volume Averaging Theory (VAT) Based Modeling
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7677
7685
.10.1016/j.ijheatmasstransfer.2012.07.075
52.
Zhou
,
F.
, and
Catton
,
I.
,
2013
, “
Obtaining Closure for a Plane Fin Heat Sink With Elliptic Scale-Roughened Surfaces for Volume Averaging Theory (VAT) Based Modeling
,”
Int. J. Therm. Sci.
,
71
, pp.
264
273
.10.1016/j.ijthermalsci.2013.04.020
53.
Zhou
,
F.
, and
Catton
,
I.
,
2013
, “
A Numerical Investigation of Turbulent Flow and Heat Transfer in Rectangular Channels With Elliptic Scale-Roughened Walls
,”
ASME J. Heat Transfer
,
135
(
8
),
p. 081901
.10.1115/1.4024278
54.
Zhou
,
F.
,
Hansen
,
N. E.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2011
, “
Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
,
133
(
12
), p.
121801
.10.1115/1.4004478
55.
Zhou
,
F.
, and
Catton
,
I.
,
2012
, “
Volume Averaging Theory (VAT) Based Modeling and Closure Evaluation for Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer
,
48
, pp.
1813
1823
.10.1007/s00231-012-1025-7
56.
Geb
,
D.
,
Zhou
,
F.
, and
Catton
,
I.
,
2012
, “
Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating
,”
ASME J. Heat Transfer
,
134
(
4
), p.
042604
.10.1115/1.4005098
57.
Geb
,
D.
,
Ge
,
M.
,
Chu
,
J.
, and
Catton
,
I.
,
2013
, “
Measuring Transport Coefficients in Heterogeneous and Hierarchical Heat Transfer Devices
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061101
.10.1115/1.4023547
58.
Geb
,
D.
,
Lerro
,
A.
,
Sbutega
,
K.
, and
Catton
,
I.
,
2013
, “
Internal Transport Coefficient Measurements in Random Fiber Matrix Heat Exchangers
,”
J. Therm. Sci. Eng. Appl.
(in press).
59.
Geb
,
D.
,
2013
, “
Hierarchical Modeling for Population-Based Heat Exchanger Design,
“ Ph.D. thesis, UCLA, Los Angeles.
60.
Zhou
,
F.
,
Hansen
,
N. E.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2011
, “
Obtaining Closure for Fin-and-Tube Heat Exchanger Modeling Based on Volume Averaging Theory (VAT)
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111802
.10.1115/1.4004393
61.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
Proceedings of the 1998 IEEE International Conference on IEEE World Congress on Computational Intelligence Evolutionary Computation
, pp.
69
73
.
62.
Xiaohui
,
H.
,
Yuhui
,
S.
, and
Eberhart
,
R.
,
2004
, “
Recent Advances in Particle Swarm
,”
Proceedings of Congress on Evolutionary Computation, CEC2004
, Vol. 91, pp.
90
97
.
63.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Lu
,
M. H.
,
2005
, “
Heat Transfer of Rectangular Narrow Channel With Two Opposite Scale-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
48
(
19-20
), pp.
3921
3931
.10.1016/j.ijheatmasstransfer.2005.04.015
64.
Lyons
,
A.
,
Krishnan
,
S.
,
Mullins
,
J.
,
Hodes
,
M.
, and
Hernon
,
D.
,
2009
, “
Advanced Heat Sinks Enabled by Three-Dimensional Printing
,”
Twentieth Annual International Solid Freeform Fabrication Symposium
.
65.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.