Gas flow through arrays of rectangular nanofins is modeled using the linearized free-molecular drag and heat transfer equations. These are combined with the one-dimensional equations for conservation of mass, momentum, and energy, and the ideal gas law, to find the governing equations for flow through the array. The results show that the pressure gradient, temperature, and local velocity of the gas are governed by coupled ordinary differential equations. The system of equations is solved for representative arrays of nanofins to find the total heat transfer and pressure drop across a 1 cm chip.

References

References
1.
Chou
,
F. C.
,
Lukes
,
J. R.
, and
Tien
,
C.-L.
,
1999
, “
Heat Transfer Enhancement by Fins in the Microscale Regime
,”
ASME J. Heat Transfer
,
121
, pp.
972
977
.10.1115/1.2826088
2.
Maveety
,
J. G.
, and
Jung
,
H. H.
,
2002
, “
Heat Transfer From Square Pin-Fin Heat Sinks Using Air Impingement Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
25
, pp.
459
469
.10.1109/TCAPT.2002.803650
3.
Egan
,
V.
,
Stafford
,
P.
,
Walsh
,
P.
, and
Walsh
,
E.
,
2009
, “
An Experimental Study on the Design of Miniature Heat Sinks for Forced Convection Air Cooling
,”
ASME J. Heat Transfer
,
131
, p.
071402
.10.1115/1.3110005
4.
Kordás
,
K.
,
Tóth
,
G.
,
Moilanen
,
P.
,
Kumpumäki
,
M.
,
Vähäkangas
,
J.
, and
Uusimäki
,
A.
,
2007
, “
Chip Cooling With Integrated Carbon Nanotube Microfin Architectures
,”
Appl. Phys. Lett.
,
90
, p.
123105
.10.1063/1.2714281
5.
Xu
,
Y.
,
Zhang
,
Y.
,
Suhir
,
E.
, and
Wang
,
X.
,
2006
, “
Thermal Properties of Carbon Nanotube Array Used for Integrated Circuit Cooling
,”
J. Appl. Phys.
,
100
, p.
074302
.10.1063/1.2337254
6.
Prasher
,
R. S.
,
Chang
,
J.-Y.
,
Sauciuc
, I
.
,
Narasimhan
,
S.
,
Cha
,
D.
,
Chrylser
,
G.
,
Myers
,
A.
,
Prstic
,
S.
, and
Hu
,
C.
,
2005
, “
Nano and Micro-Technology-Based Next-Generation Package-Level Cooling Solutions
,”
Intel Technol. J.
,
9
pp.
285
296
.10.1535/itj.0904
7.
Ramanan
,
S.
, and
Yang
,
R.
,
2009
, “
Effect of Gas Rarefaction on the Performance of Submicron Fins
,”
Appl. Phys. Lett.
,
94
, p.
143106
.10.1063/1.3115786
8.
Martin
,
M., J.
,
2012
, “
Gas Flow and Heat Transfer in Nanotube and Nanowire Arrays
,”
Phys. Fluids
,
24
, p.
029203
.10.1063/1.3693701
9.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1965
,
Introduction to Physical Gas Dynamics
,
Krieger
,
Malabar, FL
.
10.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Simulation of Gas Flows
,
Clarendon
,
Oxford, UK
.
11.
Bhiladvala
,
R. B.
, and
Wang
,
Z. J.
,
2004
, “
Effect of Fluids on the Q Factor and Resonance Frequency of Oscillating Micrometer and Nanometer Beams
,”
Phys. Rev. E
,
69
, p.
036307
.10.1103/PhysRevE.69.036307
12.
Martin
,
M. J.
,
Houston
,
B. H.
,
Baldwin
,
J. W.
, and
Zalalutdinov
,
M. K.
,
2008
, “
Damping Models for Micro-Cantilevers, Bridges, and Torsional Resonators in the Free-Molecular Flow Regime
,”
J. Microelectromech. Syst.
,
17
, pp.
503
511
.10.1109/JMEMS.2008.916321
13.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2009
, “
Free-Molecular Heat Transfer of Vibrating Cantilever and Bridges
,”
Phys. Fluids
,
21
, p.
017101
.10.1063/1.3055285
14.
Gombosi
,
T. I.
,
1994
,
Gaskinetic Theory
,
Cambridge University Press
,
Cambridge, UK
.
15.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
, pp.
167
178
.10.1109/84.585795
You do not currently have access to this content.