Spectral and directional control of thermal emission holds substantial importance in different kinds of applications, where heat transfer is predominantly by thermal radiation. Several configurations have previously been proposed, like using gratings, photonic crystals (PCs) and resonant cavities. In the present work, we investigate the thermal radiative properties of a microstructure consisting of a SiC grating on a photonic crystal. The emissivity of the microstructure is calculated with the rigorous coupled-wave analysis (RCWA) algorithm as a function of the angular frequency and the emission angle. The results reveal that thermal emission from the microstructure can exhibit very novel feature compared to those previously studied. Especially, significantly enhanced thermal emission can be achieved in a broad spectral band due to excitation of surface photon polaritons (SPhPs), PC modes, magnetic polaritons (MPs) and the coupling between them. We show that it is possible to flexibly control the thermal emission feature by adjusting the microstructure's dimensional parameters properly.

References

References
1.
Atwater
,
H. A.
, and
Polman
,
A.
,
2010
, “
Plasmonics for Improved Photovoltaic Devices
,”
Nature Mater.
,
9
, pp.
205
213
.10.1038/nmat2629
2.
Basu
,
S.
,
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
,
2007
, “
Microscale Radiation in Thermophotovoltaic Devices—A Review
,”
Int. J. Energy Res.
,
31
, pp.
689
716
.10.1002/er.1286
3.
Lin
,
S. Y.
,
Moreno
,
J.
, and
Fleming
,
J. G.
,
2003
, “
Three-Dimensional Photonic-Crystal Emitter for Thermal Photovoltaic Power Generation
,”
Appl. Phys. Lett.
,
83
, pp.
380
382
.10.1063/1.1592614
4.
Yu
,
Z.
,
Veronis
,
G.
,
Fan
,
S. H.
, and
Brongersma
,
M. L.
,
2006
, “
Design of Midinfrared Photodetectors Enhanced by Surface Plasmons on Grating Structures
,”
Appl. Phys. Lett.
,
89
,
p. 151116
.10.1063/1.2360896
5.
Kanamori
,
Y.
,
Ishimori
,
M.
, and
Hane
,
K.
,
2002
, “
High Efficient Light-Emitting Diodes With Antireflection Subwavelength Gratings
,”
IEEE Photonics Technol. Lett.
,
14
, pp.
1064
1066
.10.1109/LPT.2002.1021970
6.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Mainguy
,
S. P.
, and
Chen
,
Y.
,
2002
, “
Coherent Emission of Light by Thermal Sources
,”
Nature (London)
,
416
, pp.
61
63
.10.1038/416061a
7.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Carminati
,
R.
,
Greffet
,
J.-J.
, and
Chen
,
Y.
,
2004
, “
Coherent Spontaneous Emission of Light by Thermal Sources
,”
Phys. Rev. B
,
69
,
p. 155412
.10.1103/PhysRevB.69.155412
8.
Kreiter
,
M.
,
Oster
,
J.
,
Sambles
,
R.
,
Herminghaus
,
S.
,
Mittler-Neher
,
S.
, and
Knoll
,
W.
,
1999
, “
Thermally Induced Emission of Light From a Metallic Diffraction Grating, Mediated by Surface Plasmons
,”
Opt. Commun.
,
168
, pp.
117
122
.10.1016/S0030-4018(99)00328-4
9.
Laroche
,
M.
,
Arnold
,
C.
,
Marquier
,
F.
,
Carminati
,
R.
,
Greffet
,
J.-J.
,
Collin
,
S.
,
Bardou
,
N.
, and
Pelouard
,
J.-L.
,
2005
, “
Highly Directional Radiation Generated by a Tungsten Thermal Source
,”
Opt. Lett.
,
30
, pp.
2623
2625
.10.1364/OL.30.002623
10.
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
,
2007
, “
Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators
,”
Opt. Commun.
,
269
, pp.
411
417
.10.1016/j.optcom.2006.08.040
11.
Sai
,
H.
, and
Yugami
,
H.
,
2004
, “
Thermophotovoltaic Generation With Selective Radiators Based on Tungsten Surface Gratings
,”
Appl. Phys. Lett.
,
85
, pp.
399
3401
.10.1063/1.1807031
12.
Boardman
,
A. D.
,
1982
,
Electromagnetic Surface Modes
,
Wiley, Belfast
,
Ireland
.
13.
Raether
,
H.
,
1988
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
,
Springer-Verlag
,
Berlin
.
14.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
,
1986
, “
Organ Pipe Radiant Modes of Periodic Micromachined Silicon Surfaces
,”
Nature
,
324
, pp.
549
551
.10.1038/324549a0
15.
Maruyama
,
S.
,
Kashiwa
,
T.
,
Yugami
,
H.
, and
Esashi
,
M.
,
2001
, “
Thermal Radiation From Two-Dimensionally Confined Modes in Microcavities
,”
Appl. Phys. Lett.
,
79
, pp.
1393
1395
.10.1063/1.1397759
16.
Fu
,
C. J.
, and
Tan
W. C.
,
2009
, “
Semiconductor Thin Films Combined With Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission
,
ASME J. Heat Transfer
,
131
,
p. 033105
.10.1115/1.3056599
17.
Celanovic
,
I.
,
Perreault
,
D.
, and
Kassakian
,
J.
,
2005
, “
Resonant-Cavity Enhanced Thermal Emission
,”
Phys. Rev. B
,
72
,
p. 075127
.10.1103/PhysRevB.72.075127
18.
Huang
,
J. G.
,
Xuan
,
Y. M.
, and
Li
,
Q.
,
2011
, “
Narrow-Band Spectral Features of Structured Silver Surface With Rectangular Resonant Cavities
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
, pp.
839
846
.10.1016/j.jqsrt.2010.11.007
19.
Lee
,
B. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2008
, “
Coherent Thermal Emission by Excitation of Magnetic Polaritons Between Periodic Strips and a Metallic Film
,”
Opt. Exp.
,
16
, pp.
11328
11336
.10.1364/OE.16.011328
20.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2011
, “
Phonon-Mediated Magnetic Polaritons in the Infrared Region
,”
Opt. Express
,
19
, pp.
A126
A135
.10.1364/OE.19.00A126
21.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2004
, “
Thermal Emission Control With One-Dimensional Metallodielectric Photonic Crystals
,”
Phys. Rev. B
,
70
, p.
125101
.10.1103/PhysRevB.70.125101
22.
Lee
,
B. J.
,
Fu
,
C. J.
, and
Zhang
,
Z. M.
,
2005
, “
Coherent Thermal Emission From One-Dimensional Photonic Crystals
,”
Appl. Phys. Lett.
,
87
, p.
071904
.10.1063/1.2010613
23.
Lee
,
B. J.
,
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
,
2008
, “
Surface Waves Between Metallic Films and Truncated Photonic Crystals Observed With Reflectance Spectroscopy
,”
Opt. Lett.
,
33
, pp.
204
206
.10.1364/OL.33.000204
24.
Lee
,
B. J.
, and
Zhang
,
Z. M.
,
2006
, “
Design and Fabrication of Planar Multilayer Structure With Coherent Thermal Emission Characteristics
,”
J. Appl. Phys.
,
100
, p.
063529
.10.1063/1.2349472
25.
Gaspar-Armenta
,
J. A.
, and
Villa
,
F.
,
2003
, “
Photonic Surface-Waves Excitation: Photonic Crystal-Metal Interface
,”
J. Opt. Soc. Am. B
,
20
, pp.
2349
2354
.10.1364/JOSAB.20.002349
26.
Fu
,
C. J.
,
Zhang
,
Z. M.
, and
Tanner
,
D. B.
,
2005
, “
Planar Heterogeneous Structure for Coherent Emission of Radiation
,”
Opt. Lett.
,
30
, pp.
1873
1875
.10.1364/OL.30.001873
27.
Ben-Abdallah
,
P.
,
2004
, “
Thermal Antenna Behavior for Thin-Film Structures
,”
J. Opt. Soc. Am. A
,
21
, pp.
1368
1371
.10.1364/JOSAA.21.001368
28.
Wang
,
L. P.
,
Lee
,
B. J.
,
Wang
,
X. J.
, and
Zhang
,
Z. M.
,
2009
, “
Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Perot Resonance Cavities
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3024
3031
.10.1016/j.ijheatmasstransfer.2009.01.042
29.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids
,
Academic
,
Orlando, FL
.
30.
Moharam
,
M. G.
,
Grann
,
E. B.
,
Pommet
,
D. A.
, and
Gaylord
,
T. K.
,
1995
, “
Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings
,”
J. Opt. Soc. Am. A
,
12
, pp.
1068
1076
.10.1364/JOSAA.12.001068
31.
Moharam
,
M. G.
,
Pommet
,
D. A.
,
Grann
,
E. B.
, and
Gaylord
,
T. K.
,
1995
, “
Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Approach
,”
J. Opt. Soc. Am. A
,
12
, pp.
1077
1086
.10.1364/JOSAA.12.001077
32.
Hajimirza
,
S.
,
El
Hitti
,
G.
,
Heltzel
,
A.
, and
Howell
,
J.
,
2012
, “
Specification of Micro-Nanoscale Radiative Patterns Using Inverse Analysis for Increasing Solar Panel Efficiency
,”
ASME J. Heat Transfer
,
134
, p.
102702
.10.1115/1.4006209
You do not currently have access to this content.