This work is a statistical study of the broadband light absorption in thin film solar cells, enhanced by metallic surface nanotexturing. We consider optimum grating structures on the surface of amorphous silicon solar cells obtained by inverse optimization, and study the joint statistics of the resulting absorption enhancement/spectra in the presence of time and structural variants, such as fabrication error and year around changes in the solar irradiance, as well as the angle of incident. We adopt yearly data for solar irradiation at individual hours. In conjunction with the data for light absorption spectra at various incident angles and random samples of the fabrication error vector, we evaluate the real world performance of optimized solar cells. The resulting conclusions serve as a sensitivity/time analysis for better understanding the limits of performance and robustness of thin film cells and optimal light trapping mechanisms.

References

References
1.
Schaadt
,
D. M.
,
Feng
,
B.
, and
Yu
,
E. T.
,
2005
, “
Enhanced Semiconductor Optical Absorption via Surface Plasmon Excitation in Metal Nanoparticles
,”
Appl. Phys. Lett.
,
86
(
6
), p.
063106
.10.1063/1.1855423
2.
Beck
,
F. J.
,
Catchpole
,
K.
, and
Polma
,
A.
,
2009
, “
Red-Shifting the Surface Plasmon Resonance of Silver Nanoparticles for Light Trapping in Solar Cells
,”
J. Appl. Phys.
,
105
, p.
114310
.10.1063/1.3140609
3.
Ferry
,
V. E.
,
Verschuuren
,
M. A.
,
Li
,
H. B. T.
,
Verhagen
,
E.
,
Walters
,
R. J.
,
Schropp
,
R. E. I.
,
Atwater
,
H. A.
, and
Polman
A.
,
2010
, “
Light Trapping in Ultrathin Plasmonic Solar Cells
,”
Opt. Express
,
18
(
S2
),
A237
A245
.10.1364/OE.18.00A237
4.
Beck
,
F. J.
,
Mokkapati
,
S.
,
Polman
,
A.
, and
Catchpole
,
K. R.
,
2010
, “
Asymmetry in Photocurrent Enhancement by Plasmonic Nanoparticle Arrays Located on the Front or on the Rear of Solar Cells
,”
Appl. Phys. Lett.
,
96
(
3
), p.
033113
.10.1063/1.3292020
5.
Mokkapati
,
S.
,
Beck
,
F. J.
,
Polman
,
A.
, and
Catchpole
,
K. R.
,
2009
, “
Designing Periodic Arrays of Metal Nanoparticles for Light-Trapping Applications in Solar Cells
,”
Appl. Phys. Lett.
,
95
, p.
053115
.10.1063/1.3200948
6.
Chang
,
T. H.
,
Wu
,
P. H.
,
Chen
,
S. H.
,
Chan
,
C. H.
,
Lee
,
C. C.
,
Chen
,
C. C.
, and
Su
,
Y. K.
,
2009
, “
Efficiency Enhancement in GaAs Solar Cells Using Self-Assembled Microspheres
,”
Opt. Express
,
17
(
8
), pp.
6519
6524
.10.1364/OE.17.006519
7.
Akimov
,
Y. A.
,
Koh
,
W. S.
,
Sian
,
S. Y.
, and
Ren
,
S.
,
2010
, “
Nanoparticle-Enhanced Thin Film Solar Cells: Metallic or Dielectric Nanoparticles?
,”
Appl. Phys. Lett.
,
96
(
7
), p.
073111
.10.1063/1.3315942
8.
Pala
,
R. A.
,
White
,
J.
,
Barnard
,
E.
,
Liu
,
J.
, and
Brongersma
,
M. L.
,
2009
, “
Design of Plasmonic Thin‐Film Solar Cells With Broadband Absorption Enhancements
,”
Adv. Mater.
,
21
(
34
), pp.
3504
3509
.10.1002/adma.200900331
9.
Rockstuhl
,
C.
,
Fahr
,
S.
, and
Lederer
,
F.
,
2008
, “
Absorption Enhancement in Solar Cells by Localized Plasmon Polaritons
,”
J. Appl. Phys.
,
104
(
12
), p.
123102
.10.1063/1.3037239
10.
Tumbleston
,
J. R.
,
Ko
,
D.
,
Samulski
,
E.
, and
Lopez
,
R.
,
2009
, “
Absorption and Quasiguided Mode Analysis of Organic Solar Cells With Photonic Crystal Photoactive Layers
,”
Opt. Express
,
17
(
9
), pp.
7670
7681
.10.1364/OE.17.007670
11.
Beck
,
F. J.
,
Polman
,
A.
, and
Catchpole
,
K. R.
,
2009
, “
Tunable Light Trapping for Solar Cells Using Localized Surface Plasmons
,”
J. Appl. Phys.
,
105
(
11
), p.
114310
.10.1063/1.3140609
12.
Wang
,
W.
,
Wu
,
S.
,
Reinhardt
,
K.
,
Lu
,
Y.
, and
Chen
,
S.
,
2010
Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells
,”
Nano Lett.
,
10
(
6
), pp.
2012
2018
.10.1021/nl904057p
13.
Munday
,
J.
, and
Atwater
,
H. A.
,
2011
Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings
,”
Nano Lett.
,
11
(
6
), pp.
2195
2201
.10.1021/nl101875t
14.
Muller
,
J.
,
Rech
,
B.
,
Springer
,
J.
, and
Vanecek
,
M.
,
2004
, “
TCO and Light Trapping in Silicon Thin Film Solar Cells
,”
Sol. Energy
,
77
(
6
), pp.
917
930
.10.1016/j.solener.2004.03.015
15.
Ferry
,
V. E.
,
Verschuuren
,
M.
,
Li
,
H. T.
,
Schropp
,
R. E. I.
,
Atwater
,
H. A.
, and
Polman
,
A.
,
2009
, “
Improved Red-Response in Thin Film a-Si: H Solar Cells With Soft-Imprinted Plasmonic Back Reflectors
,”
Appl. Phys. Lett.
,
95
(
18
), p.
183503
.10.1063/1.3256187
16.
Garnett
,
E.
, and
Yang
,
P.
,
2010
, “
Light Trapping in Silicon Nanowire Solar Cells
,”
Nano Lett.
,
10
(
3
), pp.
1082
1087
10.1021/nl100161z
17.
Kayes
,
B. M.
,
Spurgeon
,
J. M.
,
Sadler
,
T. C.
,
Lewis
,
N. S.
, and
Atwater
,
H. A.
,
2006
, “
Synthesis and Characterization of Silicon Nanorod Arrays for Solar Cell Applications
,”
Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 1, IEEE
.
18.
Kelzenberg
,
M. D.
,
Boettcher
,
S. W.
,
Petykiewicz
,
J. A.
,
Turner-Evans
,
D. B.
,
Putnam
,
M. C.
,
Warren
,
E. L.
,
Spurgeon
,
J. M.
,
Briggs
,
R. M.
,
Lewis
,
N. S.
, and
Atwater
,
H. A.
,
2010
, “
Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications
,”
Nature Mater.
,
9
(
3
), pp.
239
244
.10.1038/nmat2727
19.
Stelzner
,
T.
,
Pietsch
,
M.
,
Andra
,
G.
,
Falk
,
F.
,
Ose
,
E.
, and
Christiansen
,
S.
,
2008
, “
Silicon Nanowire-Based Solar Cells
,”
Nanotechnology
,
19
(
29
), p.
295203
.10.1088/0957-4484/19/29/295203
20.
Chen
,
X.
,
2005
, “
Inverse Problems in Electromagnetic
,” Ph.D. thesis, MIT, Cambridge, MA.
21.
Necati Ozisik
,
M.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis, New York
.
22.
Chen
,
J. S.
,
Lin
,
P. D.
,
Chiu
,
F. C.
, and
Chen
,
Y. B.
,
2012
, “
Grating Profile Optimization for Narrow-Band or Broad-Band Infrared Emitters With Differential Evolution Algorithms
,”
Opt. Lett.
,
37
(
16
), pp.
3399
3401
.10.1364/OL.37.003399
23.
Hajimirza
,
S.
,
El Hitti
,
G.
,
Heltzel
,
A.
, and
Howell
,
J.
,
2012
, “
Specification of Micro-Nanoscale Radiative Patterns Using Inverse Analysis for Increasing Solar Panel Efficiency
,”
ASME J. Heat Transfer
,
134
, p.
102702
.10.1115/1.4006209
24.
Hajimirza
,
S.
,
El Hitti
,
G.
,
Heltzel
A.
, and
Howell
,
J.
,
2012
, “
Using Inverse Analysis to Find Optimum Nanoscale Radiative Surface Patterns to Enhance Solar Cell Performance
,”
Int. J. Therm. Sci.
, 62, pp. 93–102.10.1016/j.ijthermalsci.2011.12.011
25.
Hajimirza
,
S.
, and
Howell
,
J.
,
2012
, “
Inverse Optimization of Plasmonic and Antireflective Grating in Thin Film PV Cells
,”
J. Phys.: Conf. Ser.
,
369
(
1
), pp.
1
10
.10.1088/1742-6596/369/1/012015
26.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
M. P.
,
2010
,
Thermal Radiation Heat Transfer
,
5th ed.
,
CRC Press, New York.
27.
National Renewable Energy Laboratory, 2010, “The Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS),” http://www.nrel.gov/rredc/smarts/about.html
28.
Kirkpatrick
,
S.
,
1984
, “
Optimization by Simulated Annealing: Quantitative Studies
,”
J. Stat. Phys.
,
34
(
5
), pp.
975
998
.10.1007/BF01009452
29.
Cerny
,
V.
,
1985
, “
Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm
,”
J. Optim. Theory Appl.
,
45
(
1
), pp.
41
51
.10.1007/BF00940812
30.
Ingber
,
L.
,
1989
, “
Very Fast Simulated Re-Annealing
,”
Math. Comput. Modell.
,
12
(
8
), pp.
967
973
.10.1016/0895-7177(89)90202-1
You do not currently have access to this content.