Unexpected gas bubbles in microfluidic devices always bring the problems of clogging, performance deterioration, and even device functional failure. For this reason, the aim of this paper is to study the characterization variation of a valveless micropump under different existence conditions of gas bubbles based on a theoretical modeling, numerical simulation, and experiment. In the theoretical model, we couple the vibration of piezoelectric diaphragm, the pressure drop of the nozzle/diffuser and the compressibility of working liquid when gas bubbles are entrapped. To validate the theoretical model, numerical simulation and experimental studies are carried out to investigate the variation of the pump chamber pressure influenced by the gas bubbles. Based on the numerical simulation and the experimental data, the outlet flow rates of the micropump with different size of trapped gas bubbles are calculated and compared, which suggests the influence of the gas bubbles on the dynamic characterization of the valveless micropump.

References

References
1.
Laser
,
D. J.
, and
Santiago
,
J. G.
,
2004
, “
A Review of Micropumps
,”
J. Micromech. Microeng.
,
14
(
6
), pp.
R35
R64
.10.1088/0960-1317/14/6/R01
2.
Huang
,
C. W.
,
Huang
,
S. B.
, and
Lee
,
G. B.
,
2008
, “
A Microfluidic Device for Precise Pipetting
,”
J. Micromech. Microeng.
,
18
(
3
), p.
035004
.10.1088/0960-1317/18/3/035004
3.
Woias
,
P.
,
2005
, “
Micropumps—Past, Progress and Future Prospects
,”
Sens. Actuators B
,
105
(
1
), pp.
28
38
.10.1016/j.snb.2004.02.033
4.
Liu
,
Y. W.
,
Komatsuzaki
,
H.
,
Duan
,
Z. F.
,
Imai
,
S.
, and
Nishioka
,
Y.
,
2011
, “
Diffuser Micropump Structured With Extremely Flexible Diaphragm of 2-μm-Thick Polyimide Film
,”
Jpn J. Appl. Phys.
,
50
(
4
), p.
04DK15
.10.1143/JJAP.50.04DK15
5.
Herescu
,
A.
, and
Allen
,
J. S.
,
2007
, “
A Theoretical Discussion of a Menisci Micropump Driven by an Electric Field
,”
ASME J. Fluid Eng.
,
129
(
4
), pp.
404
411
.10.1115/1.2710241
6.
Guo
,
L.
,
Yan
,
W. P.
,
Xu
,
Y. H.
, and
Chen
,
Y. R.
,
2012
, “
Valveless Piezoelectric Micropump of Parallel Double Chambers
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
771
776
.10.1007/s12541-012-0101-8
7.
Ma
,
H. K.
,
Su
,
H. C.
, and
Wu
,
J. Y.
,
2011
, “
Study of an Innovative One-Sided Actuating Piezoelectric Valveless Micropump With a Secondary Chamber
,”
Sens. Actuators, A
,
171
(
2
), pp.
297
305
.10.1016/j.sna.2011.07.012
8.
Loverich
,
J. J.
,
Kanno
,
I.
, and
Kotera
,
H.
,
2006
, “
Concepts for a New Class of All-Polymer Micropumps
,”
Lab Chip
,
6
(
9
), pp.
1147
1154
.10.1039/b605525g
9.
Hosokawa
,
K.
,
Sato
,
K.
,
Ichikawa
,
N.
, and
Maeda
,
M.
,
2004
, “
Power-Free Poly(dimethylsiloxane) Microfluidic Devices for Gold Nanoparticle-Based DNA Analysis
,”
Lab Chip
,
4
(
3
), pp.
181
185
.10.1039/b403930k
10.
Merkel
,
T. C.
,
Bondar
,
V. I.
,
Nagai
,
K.
,
Freeman
,
B. D.
, and
Pinnau
,
I.
,
2000
, “
Gas Sorption, Diffusion, and Permeation in Poly(dimethylsiloxane)
,”
J. Polym. Sci., Part B: Polym. Phys.
,
38
(
3
), pp.
415
434
.10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
11.
Yuan
,
H.
, and
Prosperetti
,
A.
,
1999
, “
The Pumping Effect of Growing and Collapsing Bubbles in a Tube
,”
J. Micromech. Microeng.
,
9
(
4
), pp.
402
413
.10.1088/0960-1317/9/4/318
12.
van Steijn
,
V.
,
Kreutzer
,
M. T.
, and
Kleijn
,
C. R.
,
2008
, “
Velocity Fluctuations of Segmented Flow in Microchannels
,”
Chem. Eng. J.
,
135
, pp.
S159
S165
.10.1016/j.cej.2007.07.037
13.
Chatterjee
,
D.
, and
Amiroudine
,
S.
,
2011
, “
Lattice Boltzmann Simulation of Thermofluidic Transport Phenomena in a DC Magnetohydrodynamic (MHD) Micropump
,”
Biomed. Microdevices
,
13
(
1
), pp.
147
157
.10.1007/s10544-010-9480-8
14.
Olsson
,
A.
,
Enoksson
,
P.
,
Stemme
,
G.
, and
Stemme
,
E.
,
1997
, “
Micromachined Flat-Walled Valveless Diffuser Pumps
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
161
166
.10.1109/84.585794
15.
Jensen
,
M. J.
,
Goranovic
,
G.
, and
Bruus
,
H.
,
2004
, “
The Clogging Pressure of Bubbles in Hydrophilic Microchannel Contractions
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
876
883
.10.1088/0960-1317/14/7/006
16.
Geipel
,
A.
,
Goldschmidtoing
,
F.
,
Doll
,
A.
,
Jantscheff
,
P.
,
Esser
,
N.
,
Massing
,
U.
, and
Woias
,
P.
,
2008
, “
An Implantable Active Microport Based on a Self-Priming High-Performance Two-Stage Micropump
,”
Sens. Actuators, A
,
145
, pp.
414
422
.10.1016/j.sna.2007.11.024
17.
Schneeberger
,
N.
,
Allendes
,
R.
,
Bianchi
,
F.
,
Chappel
,
E.
,
Conan
,
C.
,
Gamper
,
S.
, and
Schlund
,
M.
,
2009
, “
Drug Delivery Micropump With Built-In Monitoring
,”
Proc. Chem.
,
1
(
1
), pp.
1339
1342
.10.1016/j.proche.2009.07.334
18.
Jung
,
J. Y.
, and
Kwak
,
H. Y.
,
2007
, “
Fabrication and Testing of Bubble Powered Micropumps Using Embedded Microheater
,”
Microfluid. Nanofluid.
,
3
(
2
), pp.
161
169
.10.1007/s10404-006-0116-5
19.
Garstecki
,
P.
,
Fuerstman
,
M. J.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2006
, “
Formation of Droplets and Bubbles in a Microfluidic T-Junction Scaling and Mechanism of Break-Up
,”
Lab Chip
,
6
(
5
), pp.
693
694
.10.1039/b605553m
20.
Hashimoto
,
M.
, and
Whitesides
,
G. M.
,
2010
, “
Formation of Bubbles in a Multisection Flow-Focusing Junction
,”
Small
,
6
(
9
), pp.
1051
1059
.10.1002/smll.200902164
21.
Chio
,
H.
,
Jensen
,
M. J.
,
Wang
,
X. L.
,
Bruus
,
H.
, and
Attinger
,
D.
,
2006
, “
Transient Pressure Drops of Gas Bubbles Passing Through Liquid-Filled Microchannel Contractions: An Experimental Study
,”
J. Micromech. Microeng.
,
16
(
1
), pp.
143
149
.10.1088/0960-1317/16/1/019
22.
Ben
,
A. M. A.
,
Wielhorski
,
Y.
,
Bizet
,
L.
, and
Breard
,
J.
,
2012
, “
Characterisation of Bubbles Formed in a Cylindrical T-Shaped Junction Device
,”
Chem. Eng. Sci.
,
76
(
7
), pp.
206
215
.10.1016/j.ces.2012.04.025
23.
Wu
,
Y. N.
,
Fu
,
T. T.
,
Zhu
,
C. Y.
,
Lu
,
Y. T.
,
Ma
,
Y. G.
, and
Li
,
H. Z.
,
2012
, “
Asymmetrical Breakup of Bubbles at a Microfluidic T-Junction Divergence: Feedback Effect of Bubble Collision
,”
Microfluid. Nanofluid.
,
13
(
5
), pp.
723
733
.10.1007/s10404-012-0991-x
24.
Fu
,
T. T.
,
Ma
,
Y. G.
,
Funfschilling
,
D.
, and
Li
,
H. Z.
,
2009
, “
Bubble Formation and Breakup Mechanism in a Microfluidic Flow-Focusing Device
,”
Chem. Eng. Sci.
,
64
(
10
), pp.
2392
2400
.10.1016/j.ces.2009.02.022
25.
Poornima
,
J.
, and
Vengadesan
,
S.
,
2012
, “
Numerical Simulation of Bubble Transport in a Bifurcating Microchannel: A Preliminary Study
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081005
.10.1115/1.4006975
26.
Odom
,
A. B.
,
Miner
,
J. M.
,
Ortiz
,
A. C.
,
Sherbeck
A. J.
,
Prasher
S. R.
, and
Phelan
,
E. P.
,
2012
, “
Microchannel Two-Phase Flow Oscillation Control With an Adjustable Inlet Orifice
,”
ASME J. Heat Transfer
,
134
, p.
122901
.10.1115/1.4007202
27.
Weber
,
M. W.
, and
Shandas
,
R.
,
2007
, “
Computational Fluid Dynamics Analysis of Microbubble Formation in Microfluidic Flow-Focusing Devices
,”
Microfluid. Nanofluid.
,
3
(
2
), pp.
195
206
.10.1007/s10404-006-0120-9
28.
Fei
,
K.
,
Chen
,
W.
, and
Hong
,
C.
,
2008
, “
Microfluidic Analysis of CO2 Bubble Dynamics Using Thermal Lattice-Boltzmann Method
,”
Microfluid. Nanofluid.
,
5
(
1
), pp.
119
129
.10.1007/s10404-007-0232-x
29.
Fries
,
D. M.
,
Trachsel
,
F.
, and
von Rohr
,
P. R.
,
2008
, “
Segmented Gas–Liquid Flow Characterization in Rectangular Microchannels
,”
Int. J. Multiphase Flow
,
34
(
12
), pp.
1108
1118
.10.1016/j.ijmultiphaseflow.2008.07.002
30.
Ide
,
H.
,
Kimura
,
R.
, and
Kawaji
,
M.
,
2007
, “
Optical Measurement of Void Fraction and Bubble Size Distributions in a Microchannel
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
713
719
.10.1080/01457630701328031
31.
Olsson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
,
1996
, “
Diffuser-Element Design Investigation for Valve-Less Pumps
,”
Sens. Actuators, A
,
57
(
2
), pp.
137
143
.10.1016/S0924-4247(97)80104-5
32.
Olsson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
,
2000
, “
Numerical and Experimental Studies of Flat-Walled Diffuser Elements for Valve-Less Micropumps
,”
Sens. Actuators, A
,
84
(
1–2
), pp.
165
175
.10.1016/S0924-4247(99)00320-9
33.
Ullmann
,
A.
, and
Fono
,
I.
,
2002
, “
The Piezoelectric Valve-Less Pump-Improved Dynamic Model
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
655
664
.10.1109/JMEMS.2002.805048
34.
Ullmann
,
A.
,
1998
, “
The Piezoelectric Valve-Less Pump—Performance Enhancement Analysis
,”
Sens. Actuators, A
,
69
(
1
), pp.
97
105
.10.1016/S0924-4247(98)00058-2
35.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
John Wiley & Sons Inc
,
New York
.
36.
Schweitzer
,
P. H.
, and
Szebehely
,
V. G.
,
1950
, “
Gas Evolution in Liquids and Cavitation
,”
J. Appl. Phys.
,
21
(
12
), pp.
1218
1224
.10.1063/1.1699579
You do not currently have access to this content.