Temperature gradient focusing (TGF) is a highly efficient focusing technique for the concentration and separation of charged analytes in microfluidic channels. The design of an appropriate temperature gradient is very important for the focusing efficiency. In this study, we proposed a new technique to generate the temperature gradient. This technique utilizes a microchannel filled with liquid-metal as an electrical heater in a microfluidic chip. By applying an electric current, the liquid-metal heater generates Joule heat, forming the temperature gradient in the microchannel. To optimize the temperature gradient and find out the optimal design for the TGF chip, numerical simulations on four typical designs were studied. The results showed that design 1 can provide a best focusing method, which has the largest temperature gradient. For this best design, the temperature is almost linearly distributed along the focusing microchannel. The numerical simulations were then validated both theoretically and experimentally. The following experiment and theoretical analysis on the best design also provide a useful guidance for designing and fabricating the liquid-metal based TGF microchip.

References

References
1.
Ross
,
D.
, and
Locascio
,
L. E.
,
2002
, “
Microfluidic Temperature Gradient Focusing
,”
Anal. Chem.
,
74
, pp.
2556
2564
.10.1021/ac025528w
2.
Balss
,
K. M.
,
Ross
,
D.
,
Begley
,
H. C.
,
Olsen
,
K. G.
, and
Tarlov
,
M. J.
,
2004
, “
DNA Hybridization Assays Using Temperature Gradient Focusing and Peptide Nucleic Acids
,”
J. Am. Chem. Soc.
,
126
, pp.
13474
13479
.10.1021/ja030667w
3.
Balss
,
K. M.
,
Vreeland
,
W. N.
,
Phinney
,
K. W.
, and
Ross
,
D.
,
2004
, “
Simultaneous Concentration and Separation of Enantiomers With Chiral Temperature Gradient Focusing
,”
Anal. Chem.
,
76
, pp.
7243
7249
.10.1021/ac049046r
4.
Balss
,
K. M.
,
Vreeland
,
W. N.
,
Howell
,
P. B.
,
Henry
,
A. C.
, and
Ross
,
D.
,
2004
, “
Micellar Affinity Gradient Focusing: A New Method for Electrokinetic Focusing
,”
J. Am. Chem. Soc.
,
126
, pp.
1936
1937
.10.1021/ja0385641
5.
Terabe
,
S.
,
Otsuka
,
K.
,
Ichikawa
,
K.
,
Tsuchiya
,
A.
, and
Ando
,
T.
,
1984
, “
Electrokinetic Separations With Micellar Solutions and Open-Tubular Capillaries
,”
Anal. Chem.
,
56
, pp.
111
113
.10.1021/ac00265a031
6.
Terabe
,
S.
,
Otsuka
,
K.
, and
Ando
T.
,
1985
, “
Electrokinetic Chromatography With Micellar Solution and Open-Tubular Capillary
,”
Anal. Chem.
,
57
, pp.
834
841
.10.1021/ac00281a014
7.
Hoebel
,
S. J.
,
Balss
,
K. M.
,
Jones
,
B. J.
,
Malliaris
,
C. D.
,
Munson
,
M. S.
,
Vreeland
,
W. N.
, and
Ross
,
D.
,
2006
, “
Scanning Temperature Gradient Focusing
,”
Anal. Chem.
,
78
, pp.
7186
7190
.10.1021/ac060934r
8.
Shackman
,
J. G.
,
Munson
,
M. S.
,
Kan
,
C. W.
, and
Ross
,
D.
,
2006
, “
Quantitative Temperature Gradient Focusing Performed Using Background Electrolytes at Various pH Values
,”
Electrophoresis
,
27
, pp.
3420
3427
.10.1002/elps.200600078
9.
Shackman
,
J. G.
,
Munson
,
M. S.
, and
Ross
,
D.
,
2007
, “
Temperature Gradient Focusing for Microchannel Separations
,”
Anal. Bioanal. Chem.
,
387
, pp.
155
158
.10.1007/s00216-006-0913-4
10.
Munson
,
M. S.
,
Danger
,
G.
,
Shackman
,
J. G.
, and
Ross
,
D.
,
2007
, “
Temperature Gradient Focusing With Field-Amplified Continuous Sample Injection for Dual-Stage Analyte Enrichment and Separation
,”
Anal. Chem.
,
79
, pp.
6201
6207
.10.1021/ac070689r
11.
Munson
,
M. S.
,
Meacham
,
J. M.
,
Locascio
,
L. E.
, and
Ross
,
D.
,
2008
, “
Counterflow Rejection of Adsorbing Proteins for Characterization of Biomolecular Interactions by Temperature Gradient Focusing
,”
Anal. Chem.
,
80
, pp.
172
178
.10.1021/ac701900m
12.
Danger
,
G.
, and
Ross
,
D.
,
2008
, “
Development of a Temperature Gradient Focusing Method for In Situ Extraterrestrial Biomarker Analysis
,”
Electrophoresis
,
29
, pp.
3107
3114
.10.1002/elps.200700778
13.
Kim
,
S. M.
,
Sommer
,
G. J.
,
Burns
,
M. A.
, and
Hasselbrink
,
E. F.
,
2006
, “
Low-Power Concentration and Separation Using Temperature Gradient Focusing Via Joule Heating
,”
Anal. Chem.
,
78
, pp.
8028
8035
.10.1021/ac061194p
14.
Sommer
,
G. J.
,
Kim
,
S. M.
,
Littrell
,
R. J.
, and
Hasselbrink
,
E. F.
,
2007
, “
Theoretical and Numerical Analysis of Temperature Gradient Focusing Via Joule Heating
,”
Lab Chip
,
7
, pp.
898
907
.10.1039/b701894k
15.
Zhang
,
H. D.
,
Zhou
,
J.
,
Xu
,
Z. R.
,
Song
,
J.
,
Dai
,
J.
,
Fang
,
J.
, and
Fang
,
Z. L.
,
2007
, “
DNA Mutation Detection With Chip-Based Temperature Gradient Capillary Electrophoresis Using a Slantwise Radiative Heating System
,”
Lab Chip
,
7
, pp.
1162
1170
.10.1039/b701649b
16.
Matsui
,
T.
,
Franzke
,
J.
,
Manz
,
A.
, and
Janasek.
D.
,
2007
, “
Temperature Gradient Focusing in a PDMS/Glass Hybrid Microfluidic Chip
,”
Electrophoresis
,
28
, pp.
4606
4611
.10.1002/elps.200700272
17.
Becker
,
M.
,
Mansouri
,
A.
,
Beilein
,
C.
, and
Janasek
,
D.
,
2009
, “
Temperature Gradient Focusing in Miniaturized Free-Flow Electrophoresis Devices
,”
Electrophoresis
,
30
, pp.
4206
4212
.10.1002/elps.200900359
18.
Reineck
,
P.
,
Wienken
,
C. J.
, and
Braun
,
D.
,
2010
, “
Thermophoresis of Single Stranded DNA
,”
Electrophoresis
,
31
, pp.
279
286
.10.1002/elps.200900505
19.
Akbari
,
M.
,
Bahrami
,
M.
, and
Sinton
,
D.
,
2012
, “
Optothermal Sample Preconcentration and Manipulation With Temperature Gradient Focusing
,”
Microfluid. Nanofluid.
,
12
, pp.
221
228
.10.1007/s10404-011-0866-6
20.
de Mello
,
A. J.
,
Habgood
,
M.
,
Lancaster
,
N. L.
,
Welton
,
T.
, and
Wootton
,
R. C. R.
,
2004
, “
Precise Temperature Control in Microfluidic Devices Using Joule Heating of Ionic Liquids
,”
Lab Chip
,
4
, pp.
417
419
.10.1039/b405760k
21.
Vigolo
,
D.
,
Rusconi
,
R.
,
Piazzaa
,
R.
, and
Stone
,
H. A.
,
2010
, “
A Portable Device for Temperature Control Along Microchannels
,”
Lab Chip
,
10
, pp.
795
798
.10.1039/b919146a
22.
Cheung
,
Y. K.
,
Gillette
,
B. M.
,
Zhong
,
M.
,
Ramcharan
,
S.
, and
Sia
,
S. K.
,
2007
, “
Direct Patterning of Composite Biocompatible Microstructures Using Microfluidics
,”
Lab Chip
,
7
, pp.
574
579
.10.1039/b700869d
23.
Peterson
,
D. S.
,
2005
, “
Solid Supports for Micro Analytical Systems
,”
Lab Chip
,
5
, pp.
132
139
.10.1039/b405311g
24.
Siegel
,
A. C.
,
Bruzewicz
,
D. A.
,
Weibel
,
D. B.
, and
Whitesides
,
G. M.
,
2007
, “
Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(Dimethylsiloxane)
,”
Adv. Mater.
,
19
, pp.
727
733
.10.1002/adma.200601787
25.
Siegel
,
A. C.
,
Tang
,
S. K. Y.
,
Nijhuis
,
C. A.
,
Hashimoto
,
M.
,
Phillips
,
S. T.
,
Dickey
,
M. D.
, and
Whitesides
,
G. M.
,
2010
, “
Cofabrication: A Strategy for Building Multicomponent Microsystems
,”
Acc. Chem. Res.
,
43
, pp.
518
528
.10.1021/ar900178k
26.
Shevkoplyas
,
S. S.
,
Siegel
,
A. C.
,
Westervelt
,
R. M.
,
Prentissc
,
M. G.
, and
Whitesides
,
G. M.
,
2007
, “
The Force Acting on a Superparamagnetic Bead Due to an Applied Magnetic Field
,”
Lab Chip
,
7
, pp.
1294
1302
.10.1039/b705045c
27.
Siegel
,
A. C.
,
Shevkoplyas
,
S. S.
,
Weibel
,
D. B.
,
Bruzewicz
,
D. A.
,
Martinez
,
A. W.
, and
Whitesides
,
G. M.
,
2006
, “
Cofabrication of Electromagnets and Microfluidic Systems in Poly(Dimethylsiloxane)
,”
Angew. Chem. Int. Ed.
,
45
, pp.
6877
6882
.10.1002/anie.200602273
28.
Dickey
,
M. D.
,
Chiechi
,
R. C.
,
Larsen
,
R. J.
,
Weiss
,
E. A.
,
Weitz
,
D. A.
, and
Whitesides
,
G. M.
,
2008
, “
Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature
,”
Adv. Funct. Mater.
,
18
, pp.
1097
1104
.10.1002/adfm.200701216
29.
So
,
J. H.
, and
Dickey
,
M. D.
,
2011
, “
Inherently Aligned Microfluidic Electrodes Composed of Liquid Metal
,”
Lab Chip
,
11
, pp.
905
911
.10.1039/c0lc00501k
30.
So
,
J. H.
,
Thelen
,
J.
,
Qusba
,
A.
,
Hayes
,
G. J.
,
Lazzi
,
G.
, and
Dickey
,
M. D.
,
2009
, “
Reversibly Deformable and Mechanically Tunable Fluidic Antennas
,”
Adv. Funct. Mater.
,
19
, pp.
3632
3637
.10.1002/adfm.200900604
31.
Blaiszik
,
B. J.
,
Kramer
,
S. L. B.
,
Grady
,
M. E.
,
McIlroy
,
D. A.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2012
, “
Autonomic Restoration of Electrical Conductivity
,”
Adv. Mater.
,
24
, pp.
398
401
.10.1002/adma.201102888
32.
Viskanta
,
R.
, and
Touloukian
,
Y. S.
,
1960
, “
Heat Transfer to Liquid Metals With Variable Properties
,”
ASME J. Heat Transfer
,
82
, pp.
333
339
.10.1115/1.3679946
33.
Sugiyama
,
K.
,
Ma
,
Y.
, and
Ishiguro
,
R.
,
1991
, “
Laminar Natural Convection Heat Transfer From a Horizontal Circular Cylinder to Liquid Metals
,”
ASME J. Heat Transfer
,
113
, pp.
91
96
.10.1115/1.2910556
34.
Talmage
,
G.
,
1994
, “
A Note on Heat Conduction in Liquid Metals: A Comparison of Laminar and Turbulent Flow Effects
,”
ASME J. Heat Transfer
,
116
, pp.
476
479
.10.1115/1.2911421
35.
Kamotani
,
Y.
,
Weng
,
F. B.
, and
Ostrach
,
S.
,
1994
, “
Oscillatory Natural Convection of a Liquid Metal in Circular Cylinders
,”
ASME J. Heat Transfer
,
116
, pp.
627
632
.10.1115/1.2910915
36.
Emery
,
A. F.
, and
Bailey
,
D. A.
,
1967
, “
Heat Transfer to Fully Developed Liquid Metal Flow in Tubes
,”
ASME J. Heat Transfer
,
89
, pp.
272
273
.10.1115/1.3614380
37.
Tagawa
T.
, and
Ozoe
,
H.
,
1997
, “
Enhancement of Heat Transfer Rate by Application of a Static Magnetic Field during Natural Convection of Liquid Metal in a Cube
,”
ASME J. Heat Transfer
,
119
, pp.
265
271
.10.1115/1.2824219
38.
Selver
,
R.
,
Kamotani
,
Y.
, and
Ostrach
,
S.
,
1998
, “
Natural Convection of a Liquid Metal in Vertical Circular Cylinders Heated Locally From the Side
,”
ASME J. Heat Transfer
,
120
, pp.
108
114
.10.1115/1.2830033
39.
Deng
,
Y. G.
, and
Liu
,
J.
,
2010
, “
Design of Practical Liquid Metal Cooling Device for Heat Dissipation of High Performance CPUs
,”
ASME J. Electron. Packag.
,
132
, p.
031009
.10.1115/1.4002012
40.
Li
,
P. P.
, and
Liu
,
J.
,
2011
, “
Self-Driven Electronic Cooling Based on Thermosyphon Effect of Room Temperature Liquid Metal
,”
ASME J. Electron. Packag.
,
133
, p.
041009
.10.1115/1.4005297
41.
Okada
,
K.
, and
Ozoe
,
H.
,
1992
, “
Experimental Heat Transfer Rates of Natural Convection of Molten Gallium Suppressed Under an External Magnetic Field in Either the X, Y, or Z Direction
,”
ASME J. Heat Transfer
,
114
, pp.
107
114
.10.1115/1.2911234
42.
Braunsfurth
,
M. G.
,
Skeldon
,
A. C.
,
Juel
,
A.
,
Mullin
,
T.
, and
Riley
,
D. S.
,
1997
, “
Free Convection in Liquid Gallium
,”
J. Fluid Mech.
,
342
, pp.
295
314
.10.1017/S0022112097005569
43.
Tagawa
,
T.
, and
Ozoe
,
H.
,
1998
, “
Enhanced Heat Transfer Rate Measured for Natural Convection in Liquid Gallium in a Cubical Enclosure Under a Static Magnetic Field
,”
ASME J. Heat Transfer
,
120
, pp.
1027
1032
.10.1115/1.2825886
44.
Prokhorenko
,
V. Y.
,
Roshchupkin
,
V. V.
,
Pokrasin
,
M. A.
,
Prokhorenko
,
S. V.
, and
Kotov
,
V. V.
,
2000
, “
Liquid Gallium: Potential Uses as a Heat Transfer Agent
,”
High Temp.
,
38
, pp.
954
968
.10.1023/A:1004157827093
45.
Juel
,
A.
,
Mullin
,
T.
,
Hadid
H. B.
, and
Henry
,
D.
,
2001
, “
Three-Dimensional Free Convection in Molten Gallium
,”
J. Fluid Mech.
,
436
, pp.
267
281
.10.1017/S0022112001003937
46.
Xia
,
Y. N.
, and
Whitesides
,
G. M.
,
1998
, “
Soft Lithography
,”
Annu. Rev. Mater. Sci.
,
28
, pp.
153
184
.10.1146/annurev.matsci.28.1.153
47.
Xia
,
Y. N.
, and
Whitesides
,
G. M.
,
1998
, “
Soft Lithography
,”
Angew. Chem. Int. Ed.
,
37
, pp.
550
575
.10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
48.
Gui
,
L.
, and
Ren
,
L. Q.
,
2006
, “
Numerical Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous Flow PCR Chip
,”
Anal. Chem.
,
78
, pp.
6215
6222
.10.1021/ac060553d
49.
Holman
,
J. P.
,
1997
,
Heat Transfer
,
McGraw-Hill
,
New York
.
50.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
1998
,
Heat Transfer (in Chinese)
,
Higher Education Press
,
Beijing, China
.
51.
Ozisik
,
M. N.
,
1980
,
Heat Conduction
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.