Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via coalescence-induced shedding. In this work, we investigated a scalable synthesis technique to produce functionalized oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth and departure behavior of the condensed droplets. Nanostructured copper oxide (CuO) films were formed via chemical oxidation in an alkaline solution resulting in dense arrays of sharp CuO nanostructures with characteristic heights and widths of ≈1 μm and ≈300 nm, respectively. To make the CuO surfaces superhydrophobic, they were functionalized by direct deposition of a fluorinated silane molecular film or by sputtering a thin gold film before depositing a fluorinated thiol molecular film. Condensation on these surfaces was characterized using optical microscopy and environmental scanning electron microscopy to quantify the distribution of nucleation sites and elucidate the growth behavior of individual droplets with characteristic radii of ≈1–10 μm at supersaturations ≤1.5. Comparison of the measured individual droplet growth behavior to our developed heat transfer model for condensation on superhydrophobic surfaces showed good agreement. Prediction of the overall heat transfer enhancement in comparison to a typical dropwise condensing surface having an identical nucleation density suggests a restricted regime of enhancement limited to droplet shedding radii <~2.5 μm due to the large apparent contact angles of condensed droplets on the fabricated CuO surfaces. The findings demonstrate that superhydrophobic condensation typified by coalescence-induced droplet shedding may not necessarily enhance heat transfer and highlights the need for further quantification of the effects of surface structure on nucleation density and careful surface design to minimize parasitic thermal resistances.

References

References
1.
Beér
,
J. M.
,
2007
, “
High Efficiency Electric Power Generation: The Environmental Role
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
107
134
.10.1016/j.pecs.2006.08.002
2.
Khawaji
,
A. D.
,
Kutubkhanah
, I
. K.
, and
Wie
,
J. M.
,
2008
, “
Advances in Seawater Desalination Technologies
,”
Desalination
,
221
(
1–3
), pp.
47
69
.10.1016/j.desal.2007.01.067
3.
Pérez-Lomabard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.10.1016/j.enbuild.2007.03.007
4.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.10.1021/nn205052a
5.
Boreyko
,
J. B.
, and
Chen
,
C.-H.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
(
18
), p.
184501
.10.1103/PhysRevLett.103.184501
6.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A.
, and
Joshi
,
Y.
,
2010
, “
ESEM Imaging of Condensation on a Nanostructured Superhydrophobic Surface
,”
J. Heat Transfer
,
132
(
8
), p.
080904
.10.1115/1.4001752
7.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A. G.
, and
Joshi
,
Y.
,
2010
, “
Visualization of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement During Dropwise Condensation
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033104
.10.1063/1.3460275
8.
Rykaczewski
,
K.
,
Osborn
,
W. A.
,
Chinn
,
J.
,
Walker
,
M. L.
,
Scott
,
J. H. J.
,
Jones
,
W.
,
Hao
,
C.
,
Yao
,
S.
, and
Wang
,
Z.
,
2012
, “
How Nanorough is Rough Enough to Make a Surface Superhydrophobic During Water Condensation?
,”
Soft Matter
,
8
, pp.
8786
8794
.10.1039/c2sm25502b
9.
Rykaczewski
,
K.
, and
Scott
,
J. H. J.
,
2011
, “
Methodology for Imaging Nano-to-Microscale Water Condensation Dynamics on Complex Nanostructures
,”
ACS Nano
,
5
(
7
), pp.
5962
5968
.10.1021/nn201738n
10.
Rykaczewski
,
K.
,
Scott
,
J. H. J.
, and
Fedorov
,
A. G.
,
2011
, “
Electron Beam Heating Effects During Environmental Scanning Electron Microscopy Imaging of Water Condensation on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
98
(
9
), p.
093106
.10.1063/1.3560443
11.
Rykaczewski
,
K.
,
Scott
,
J. H. J.
,
Rajauria
,
S.
,
Chinn
,
J.
,
Chinn
,
A. M.
, and
Jones
,
W.
,
2011
, “
Three Dimensional Aspects of Droplet Coalescence During Dropwise Condensation on Superhydrophobic Surfaces
,”
Soft Matter
,
7
(
19
), pp.
8749
8752
.10.1039/c1sm06219k
12.
Feng
,
J.
,
Pang
,
Y.
,
Qin
,
Z.
,
Ma
,
R.
, and
Yao
,
S.
,
2012
, “
Why Condensate Drops can Spontaneously Move Away on Some Superhydrophobic Surfaces But can not on Others?
,”
ACS Appl. Mater. Interfaces
,
4
, pp.
6618
6625
.10.1021/am301767k
13.
Feng
,
J.
,
Qin
,
Z.
, and
Yao
,
S.
,
2012
, “
Factors Affecting the Spontaneous Motion of Condensate Drops on Superhydrophobic Copper Surfaces
,”
Langmuir
,
28
(
14
), pp.
6067
6075
.10.1021/la300609f
14.
Enright
,
R.
,
Miljkovic
,
N.
,
Al-Obeidi
,
A.
,
Thompson
,
C. V.
, and
Wang
,
E. N.
,
2012
, “
Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale
,”
Langmuir
,
28
(
40
), pp.
14424
14432
.10.1021/la302599n
15.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
541
546
.10.1039/tf9444000546
16.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
, pp.
988
994
.10.1021/ie50320a024
17.
Choi
,
W.
,
Tuteja
,
A.
,
Mabry
,
J. M.
,
Cohen
,
R. E.
, and
Mckinley
,
G. H.
,
2009
, “
A Modified Cassie-Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
208
216
.10.1016/j.jcis.2009.07.027
18.
Brisard
,
G. M.
,
Rudnicki
,
J. D.
,
Mclarnon
,
F.
, and
Cairns
,
E. J.
,
1995
, “
Application of Probe Beam Deflection to Study the Electrooxidation of Copper in Alkaline Media
,”
Electrochim. Acta
,
40
(
7
), pp.
859
865
.10.1016/0013-4686(94)00360-D
19.
Nam
,
Y.
, and
Sungtaek
,
Y.
,
2012
, “
A Comparative Study of the Morphology and Wetting Characteristics of Micro/Nanostructured Cu Surfaces for Phase Change Heat Transfer Applications
,”
J. Adhesion Sci. Tech.
, (online).10.1080/01694243.2012.697783
20.
Drogowska
,
M.
,
Brossard
,
L.
, and
Ménard
,
H.
,
1988
, “
Influence of Anions on the Passivity Behavior of Copper in Alkaline Solutions
,”
Surf. Coat. Technol.
,
34
(
4
), pp.
383
400
.10.1016/0257-8972(88)90096-5
21.
Kashchiev
,
D.
,
2000
,
Nucleation: Basic Theory With Applications
,
Butterworth-Heinemann
,
Oxford
.
22.
Cao
,
L.
,
Jones
,
A. K.
,
Sikka
,
V. K.
,
Wu
,
J. Z.
, and
Gao
,
D.
,
2009
, “
Anti-Icing Superhydrophobic Coatings
,”
Langmuir
,
25
(
21
), pp.
12444
12448
.10.1021/la902882b
23.
Gibbs
,
J. W.
,
Bumstead
,
H. A.
, and
Van Name
,
R. G.
,
1906
,
The Scientific Papers of J. Willard Gibbs
,
Longmans, Green and Co.
,
New York
.
24.
Quéré
,
D.
,
2008
, “
Wetting and Roughness
,”
Annu. Rev. Mater. Res.
,
38
(
1
), pp.
71
99
.10.1146/annurev.matsci.38.060407.132434
25.
Kwak
,
K.
, and
Kim
,
C.
,
2005
, “
Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
,
17
(
2
), pp.
35
40
.
26.
Blow
,
M. L.
,
Kusumaatmaja
,
H.
, and
Yeomans
,
J. M.
,
2009
, “
Imbibition Through an Array of Triangular Posts
,”
J. Phys.: Condens. Matter
,
21
(
46
), p.
464125
.10.1088/0953-8984/21/46/464125
27.
Stelmashenko
,
N. A.
,
Craven
,
J. P.
,
Donald
,
A. M.
,
Terentjev
,
E. M.
, and
Thiel
,
B. L.
,
2001
, “
Topographic Contrast of Partially Wetting Water Droplets in Environmental Scanning Electron Microscopy
,”
J. Microsc.
,
204
(
2
), pp.
172
183
.10.1046/j.1365-2818.2001.00953.x
28.
Wang
,
Z.
,
Guo
,
W.
,
Li
,
L.
,
Luk'yanchuk
,
B.
,
Khan
,
A.
,
Liu
,
Z.
,
Chen
,
Z.
, and
Hong
,
M.
,
2010
, “
Optical Virtual Imaging at 50 nm Lateral Resolution With a White-Light Nanoscope
,”
Nat. Commun.
,
2
, p.
218
.10.1038/ncomms1211
29.
Wier
,
K. A.
, and
McCarthy
,
T. J.
,
2006
, “
Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility: Ultrahydrophobic Surfaces are Not Always Water Repellant
,”
Langmuir
,
22
(
6
), pp.
2433
2436
.10.1021/la0525877
30.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
, pp.
671
675
.10.1038/nmeth.2089
31.
Gaertner
,
R. D.
,
1963
, “
Distribution of Active Sites in the Nucleate Boiling of Liquids
,”
Chem. Eng. Prog. Symp. Series
, Vol.
59
(41), pp.
52
61
.
32.
Cao
,
P.
,
Xu
,
K.
,
Varghese
,
J. O.
, and
Heath
,
J. R.
,
2011
, “
The Microscopic Structure of Adsorbed Water on Hydrophobic Surfaces Under Ambient Conditions
,”
Nano Lett.
,
11
(
12
), pp.
5581
5586
.10.1021/nl2036639
33.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Growth Dynamics During Dropwise Condensation on Nanostructured Superhydrophobic Surfaces
,”
Proceedings of the 3rd Micro/Nanoscale Heat & Mass Transfer International Conference
, Atlanta, GA, March 3–6.
34.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis Group
,
LLC, New York
.
35.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081502
.10.1115/1.4003742
36.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Modeling and Optimization of Condensation Heat Transfer on Micro and Nanostructured Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
(in press).10.1115/1.4024597
37.
Lemmon
,
E. W.
,
Mclinden
,
M. O.
, and
Friend
,
D. G.
,
2005
,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Thermophysical Properties of Fluid Systems
.
38.
Fritter
,
D.
,
Knobler
,
C. M.
, and
Beysens
,
D. A.
,
1991
, “
Experiments and Simulations of the Growth of Droplets on a Surface (Breath Figures)
,”
Phys. Rev. A
,
43
(
6
), pp.
2858
2869
.10.1103/PhysRevA.43.2858
39.
Rose
,
J. W.
, and
Glicksman
,
L. R.
,
1973
, “
Dropwise Condesation—The Distribution of Drop Sizes
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
411
425
.10.1016/0017-9310(73)90068-9
40.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2012
, “
Jumping-Droplet-Enhanced Condesation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.10.1021/nl303835d
You do not currently have access to this content.