In this work, thermophysical properties, microstructure, and pool boiling characteristics of water-in-polyalphaolefin (PAO) nanoemulsion fluids have been measured in the water concentration range of 0–10.3 vol. %, in order to gain basic data for nanoemulsion boiling. Water-in-PAO nanoemulsion fluids are formed via self-assembly with surfactant: sodium sullfosuccinate (AOT). Thermal conductivity of these fluids is found to increase monotonically with water concentration, as expected from the Maxwell equation. Unlike thermal conductivity, their dynamic viscosity first increases with water concentration, reaches a maximum at 5.3 vol. %, and then decreases. The observed maximum viscosity could be attributed to the attractive forces among water droplets. The microstructures of the water-in-PAO nanoemulsion fluids are measured via the small-angle neutron scattering (SANS) technique, which shows a transition from sphere to elongated cylinder when the water concentration increases above 5.3 vol. %. The pool boiling heat transfer of these water-in-PAO nanoemulsion fluids is measured on a horizontal Pt wire at room temperature (25 °C, subcooled condition). One interesting phenomenon observed is that the pool boiling follows two different curves randomly when the water concentration is in the range of 5.3 vol. % to 7.8 vol. %.

References

References
1.
Eastman
,
L. J.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Thompson
,
L. J.
,
1997
, “
Enhanced Thermal Conductivity Through Development of Nanofluids
,”
Nanocryst. Nanocomp. Mater. II
,
12
, pp.
457
468
.
2.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
3.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
4.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
5.
Wen
,
D. S.
, and
Ding
,
Y. L.
,
2004
, “
Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotubes Nanofluids)
,”
J. Thermophys. Heat Transfer
,
18
(
4
), pp.
481
485
.10.2514/1.9934
6.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
(
8
), p.
084314
.10.1063/1.2191571
7.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2006
, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
,
89
(
14
), p.
143119
.10.1063/1.2360229
8.
Yang
,
B.
, and
Han
,
Z. H.
,
2006
, “
Thermal Conductivity Enhancement in Water-in-FC72 Nanoemulsion Fluids
,”
Appl. Phys. Lett.
,
88
(
26
), p.
261914
.10.1063/1.2218325
9.
Yang
,
Y.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Wu
,
G.
,
2006
, “
Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions
,”
J. Appl. Phys.
,
99
(
11
), p.
114307
.10.1063/1.2193161
10.
Yang
,
B.
, and
Han
,
Z. H.
,
2006
, “
Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids
,”
Appl. Phys. Lett.
,
89
(
8
), p.
083111
.10.1063/1.2338424
11.
Han
,
Z. H.
, and
Yang
,
B.
,
2008
, “
Thermophysical Characteristics of Water-in-FC72 Nanoemulsion Fluids
,”
Appl. Phys. Lett.
,
92
(
1
), p.
013118
.10.1063/1.2830334
12.
Xu
,
J. J.
,
Wu
,
C. W.
, and
Yang
,
B.
,
2010
, “
Thermal- and Phase-Change Characteristics of Self-Assembled Ethanol/Polyalphaolefin Nanoemulsion Fluids
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
208
211
.10.2514/1.43752
13.
Xu
,
J.
,
Yang
,
B.
, and
Hammouda
,
B.
,
2011
, “
Thermal Conductivity and Viscosity of Self-Assembled Alcohol/Polyalphaolefin Nanoemulsion Fluids
,”
Nanoscale Res. Lett.
,
6
, pp.
274
280
.10.1186/1556-276X-6-274
14.
Wu
,
C.
,
Cho
,
T. J.
,
Xu
,
J.
,
Lee
,
D.
,
Yang
,
B.
, and
Zachariah
,
M. R.
,
2010
, “
Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids
,”
Phys. Rev. E
,
81
(
1
), p.
011406
.10.1103/PhysRevE.81.011406
15.
Xu
,
J.
, and
Zhang
,
Y.
,
2009
, “
Analysis of Heat Transfer During Liquid-Vapor Pulsating Flow in a U-Shaped Miniature Channel
,”
J. Enhanced Heat Transfer
,
16
(
4
), pp.
367
385
.10.1615/JEnhHeatTransf.v16.i4.40
16.
Xu
,
J.
,
Zhang
,
Y.
, and
Ma
,
H.
,
2009
, “
Effect of Internal Wick Structure on Liquid-Vapor Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121012
.10.1115/1.3222736
17.
Bergles
,
A. E.
,
1969
, “
Influence of Heated-Surface Vibration on Pool Boiling
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
152
154
.10.1115/1.3580073
18.
Bradfiel
,
W. S.
,
1967
, “
On Effect of Subcooling on Wall Superheat in Pool Boiling
,”
ASME J. Heat Transfer
,
89
(
3
), pp.
269
270
.10.1115/1.3614378
19.
Bulanov
,
N. V.
,
Skripov
,
V. P.
, and
Khmylnin
,
V. A.
,
1984
, “
Heat Transfer to Emulsion With Superheating of Its Disperse Phase
,”
J. Eng. Phys.
, pp.
1
3
.
20.
Bulanov
,
N. V.
,
Skripov
,
V. P.
, and
Khmylnin
,
V. A.
,
1993
, “
Heat Transfer to Emulsion With a Low-Boiling Disperse Phase
,”
Heat Transfer Res.
, pp.
786
789
.
21.
Bulanov
,
N. V.
,
2001
, “
An Analysis of the Heat Flux Density Under Conditions of Boiling Internal Phase of Emulsion
,”
High Temp.
,
39
(
3
), pp.
462
469
.10.1023/A:1017575012668
22.
Bulanov
,
N. V.
, and
Gasanov
,
B. M.
,
2005
, “
Experimental Setup for Studying the Chain Activation of Low-Temperature Boiling Sites in Superheated Liquid Droplets
,”
Colloid J.
,
67
(
5
), pp.
531
536
.10.1007/s10595-005-0129-x
23.
Bulanov
,
N. V.
,
Gasanov
,
B. M.
, and
Turchaninova
,
E. A.
,
2006
, “
Results of Experimental Investigation of Heat Transfer With Emulsions With Low-Boiling Disperse Phase
,”
High Temp.
,
44
(
2
), pp.
267
282
.10.1007/s10740-006-0033-z
24.
Bulanov
,
N. V.
, and
Gasanov
,
B. M.
,
2008
, “
Peculiarities of Boiling of Emulsions With a Low-Boiling Disperse Phase
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1628
1632
.10.1016/j.ijheatmasstransfer.2007.07.027
25.
Henry
,
C. D.
, and
Kim
,
J. H.
,
2004
, “
A Study of the Effects of Heater Size, Subcooling, and Gravity Level on Pool Boiling Heat Transfer
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
262
273
.10.1016/j.ijheatfluidflow.2003.11.019
26.
Kim
,
J. B.
,
Oh
,
B. D.
, and
Kim
,
M. H.
,
2006
, “
Experimental Study of Pool Temperature Effects on Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
32
(
2
), pp.
208
231
.10.1016/j.ijmultiphaseflow.2005.09.005
27.
Kim
,
S. J.
,
Bang
, I
. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
28.
Kim
,
B. H.
,
Beskok
,
A.
, and
Cagin
,
T.
,
2008
, “
Molecular Dynamics Simulations of Thermal Resistance at the Liquid-Solid Interface
,”
J. Chem. Phys.
,
129
(
17
), p.
174701
.10.1063/1.3001926
29.
Rosele
,
M. L.
,
2010
, “
Boiling of Dilute Emulsions
,” Ph.D. dissertation, University of Minnesota, Twin Cities, MN.
30.
Roesle
,
M. L.
, and
Kulacki
,
F. A.
,
2010
, “
Boiling of Dilute Emulsions-Toward a New Modeling Framework
,”
Ind. Eng. Chem. Res.
,
49
(
11
), pp.
5188
5196
.10.1021/ie9013259
31.
Shai
, I
.
, and
Rohsenow
,
W. M.
,
1969
, “
Mechanism of and Stability Criterion for Nucleate Pool Boiling of Sodium
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
315
328
.10.1115/1.3580161
32.
Shepherd
,
J. E.
, and
Sturtevant
,
B.
,
1982
, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mech.
,
121
, pp.
379
402
.10.1017/S0022112082001955
33.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
,
1999
,
Handbook of Phase Change:Boiling and Condensation
,
Taylor & Francis
,
London
.
34.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
35.
Kumar
,
P.
, and
Mittal
,
K. L.
,
1999
,
Handbook of Microemulsion Science and Technology
,
Marcel Dekker
,
New York
.
36.
Moulik
,
S. P.
, and
Ray
,
S.
,
1994
, “
Thermodynamics of Clustering of Droplets in Water/AOT/Heptane Microemulsion
,”
Pure Appl. Chem.
,
66
(
3
), pp.
521
525
.10.1351/pac199466030521
37.
Bergenholtz
,
J.
,
Romagnoli
,
A. A.
, and
Wagner
,
N. J.
,
1995
, “
Viscosity, Microstructure, and Interparticle Potential of AOT/H2O/N-Decane Inverse Microemulsions
,”
Langmuir
,
11
(
5
), pp.
1559
1570
.10.1021/la00005a025
38.
Batra
,
U.
,
Russel
,
W. B.
, and
Huang
,
J. S.
,
1999
, “
Viscosity Anomaly and Charge Fluctuations in Dilute AOT Microemulsions With X < 20
,”
Langmuir
,
15
(
11
), pp.
3718
3725
.10.1021/la9812727
39.
Hirai
,
M.
,
Kawai-Hirai
,
R.
,
Sanada
,
M.
,
Iwase
,
H.
, and
Mitsuya
,
S.
,
1999
, “
Characteristics of AOT Microemulsion Structure Depending on a Polar Solvents
,”
J. Phys. Chem. B
,
103
(
44
), pp.
9658
9662
.10.1021/jp991899d
40.
Hirai
,
M.
,
Hirai
,
R. K.
,
Iwase
,
H.
,
Arai
,
S.
,
Mitsuya
,
S.
,
Takeda
,
T.
,
Seto
,
H.
, and
Nagao
,
M.
,
1999
, “
Dynamics of w/o AOT Microemulsions Studied by Neutron Spin Echo
,”
J. Phys. Chem. Solids
,
60
(
8–9
), pp.
1359
1361
.10.1016/S0022-3697(99)00113-4
41.
Lawrence
,
M. J.
, and
Warisnoicharoen
,
W.
,
2006
, “Recent Advances in Microemulsions as Drug Delivery Vehicles,”
Nanoparticles as Drug Carriers
,
Imperial College Press
,
London
.
42.
Tyndall
,
J.
,
1868
, “
On the Blue Colour of the Sky, the Polarization of Sky-Light, and on the Polarization of Light by Cloudy Matter Generally
,”
Proc. R. Soc. London
,
17
, pp.
223
233
.10.1098/rspl.1868.0033
43.
He
,
G. S.
,
Qin
,
H.-Y.
, and
Zheng
,
Q.
,
2009
, “
Rayleigh, Mie, and Tyndall Scatterings of Polystyrene Microspheres in Water: Wavelength, Size, and Angle Dependences
,”
J. Appl. Phys.
,
105
(
2
), p.
023110
.10.1063/1.3068473
44.
Yang
,
B.
,
Liu
,
W. L.
,
Liu
,
J. L.
,
Wang
,
K. L.
, and
Chen
,
G.
,
2002
, “
Measurements of Anisotropic Thermoelectric Properties in Superlattices
,”
Appl. Phys. Lett.
,
81
(
19
), pp.
3588
3590
.10.1063/1.1515876
45.
Cahill
,
D. G.
,
1990
, “
Thermal-Conductivity Measurement From 30-K to 750-K—The 3-Omega Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
46.
Chevron Phillips Chemical LP
,
2002
,
Synfluid PAO Databook
,
The Woodlands
,
TX
.
47.
Hammouda
,
B.
,
2010
, “
SANS From Polymers-Review of the Recent Literature
,”
Polym. Rev.
,
50
(
1
), pp.
14
39
.10.1080/15583720903503460
48.
Liu
,
J. C.
,
Li
,
G. Z.
, and
Han
,
B. X.
,
2001
, “
Characteristics of AOT Microemulsion Structure: A Small Angle X-Ray Scattering Study
,”
Chin. Chem. Lett.
,
12
(
11
), pp.
1023
1026
.
49.
Howe
,
A. M.
,
Toprakcioglu
,
C.
,
Dore
,
J. C.
, and
Robinson
,
B. H.
,
1986
, “
Small-Angle Neutron-Scattering Studies of Microemulsions Stabilized by Aerosol-OT 3. The Effect of Additives on Phase-Stability and Droplet Structure
,”
J. Chem. Soc., Faraday Trans. 1
,
82
, pp.
2411
2422
.
50.
Bisal
,
S.
,
Bhattacharya
,
P. K.
, and
Moulik
,
S. P.
,
1990
, “
Conductivity Study of Microemulsions—dependence of Structural Behavior of Water Oil Systems on Surfactant, Cosurfactant, Oil, and Temperature
,”
J. Phys. Chem.
,
94
(
1
), pp.
350
355
.10.1021/j100364a060
51.
Nagao
,
M.
,
Seto
,
H.
,
Shibayama
,
M.
, and
Yamada
,
N. L.
,
2003
, “
Small-Angle Neutron Scattering Study of Droplet Density Dependence of the Water-in-Oil Droplet Structure in a Ternary Microemulsion
,”
J. Appl. Crystallogr.
,
36
, pp.
602
606
.10.1107/S0021889803006174
52.
Kotlarchyk
,
M.
,
Chen
,
S. H.
, and
Huang
,
J. S.
,
1982
, “
Temperature-Dependence of Size and Polydispersity in a 3-Component Micro-Emulsion by Small-Angle Neutron-Scattering
,”
J. Phys. Chem.
,
86
(
17
), pp.
3273
3276
.10.1021/j100214a001
53.
Hammouda
,
B.
,
Krueger
,
S.
, and
Glinka
,
C. J.
,
1993
, “
Small-Angle Neutron-Scattering at the National-Institute-of-Standards-and-Technology
,”
J. Res. Natl. Inst. Stand. Technol.
,
98
(
1
), pp.
31
46
.10.6028/jres.098.003
54.
Gradzielski
,
M.
, and
Langevin
,
D.
,
1996
, “
Small-Angle Neutron Scattering Experiments on Microemulsion Droplets: Relation to the Bending Elasticity of the Amphiphilic Film
,”
J. Mol. Struct.
,
383
(
1–3
), pp.
145
156
.10.1016/S0022-2860(96)09279-4
55.
Marszalek
,
J.
,
Pojman
,
J. A.
, and
Page
,
K. A.
,
2008
, “
Neutron Scattering Study of the Structural Change Induced by Photopolymerization of AOT/D(2)O/Dodecyl Acrylate Inverse Microemulsions
,”
Langmuir
,
24
(
23
), pp.
13694
13700
.10.1021/la8022634
56.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p. 094312.10.1063/1.3245330
57.
Maxwell
,
J. C.
,
1904
, “
A Treatise on Electricity and Magnetism
,”
Oxford University Press
,
Cambridge, UK
.
58.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
59.
Alexandridis
,
P.
,
Holzwarth
,
J. F.
, and
Hatton
,
T. A.
,
1995
, “
Thermodynamics of Droplet Clustering in Percolating AOT Water-in-Oil Microemulsions
,”
J. Phys. Chem.
,
99
(
20
), pp.
8222
8232
.10.1021/j100020a054
60.
Hammouda
,
B.
,
2010
, “
A New Guinier-Porod Model
,”
J. Appl. Crystallogr.
,
43
, pp.
716
719
.10.1107/S0021889810015773
61.
Blokhuis
,
E. M.
, and
Sager
,
W. F. C.
,
2001
, “
Sphere to Cylinder Transition in a Single Phase Microemulsion System: A Theoretical Investigation
,”
J. Chem. Phys.
,
115
(
2
), pp.
1073
1085
.10.1063/1.1380428
62.
Langevin
,
D.
,
1992
, “
Micelles and Microemulsion
,”
Annu. Rev. Phys. Chem.
,
43
, pp.
341
369
.10.1146/annurev.pc.43.100192.002013
63.
Hodgson
,
A. S.
,
1969
, “
hysteresis Effects in Surface Boiling of Water
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
160
162
.10.1115/1.3580078
64.
Celata
,
G. P.
,
Cumo
,
M.
, and
Setaro
,
T.
,
1992
, “
hysteresis Phenomena in Subcooled Flow Boiling of Well-Wetting Fluids
,”
Exp. Heat Transfer
,
5
(
4
), pp.
253
275
.10.1080/08916159208946444
You do not currently have access to this content.