Methods used to measure the temperature of AlxGa1−xN based ultraviolet light emitting diodes (UV LEDs) are based on optical or electrical phenomena that are sensitive to either local, surface, or average temperatures within the LED. A comparative study of the temperature rise of AlxGa1−xN UV LEDs measured by micro-Raman spectroscopy, infrared (IR) thermography, and the forward voltage method is presented. Experimental temperature measurements are provided for UV LEDs with micropixel and interdigitated contact geometries, as well as for a number of different packaging configurations. It was found that IR spectroscopy was sensitive to optical properties of the device layers, while forward voltage method provided higher temperatures, in general. Raman spectroscopy was used to measure specific layers within the LED, showing that growth substrate temperatures in the flip-chip LEDs agreed more closely to IR measurements while layers closer to the multiple quantum wells (MQWs) agreed more closely with Forward Voltage measurements.

References

References
1.
Schubert
,
E. F.
,
2010
,
Light-Emitting Diodes
,
2nd ed.
,
Cambridge University Press
,
Cambridge, United Kingdom
, pp.
222
234
.
2.
Chevremont
,
A. C.
,
Farnet
,
A. M.
,
Sergent
,
M.
,
Coulomb
,
B.
, and
Boudenne
,
J. L.
,
2012
, “
Multivariate Optimization of Fecal Bioindicator Inactivation by Coupling UV-A and UV-C LEDs
,”
Desalination
,
285
, pp.
219
225
.10.1016/j.desal.2011.10.006
3.
Würtele
,
M. A.
,
Kolbe
,
T.
,
Lipsz
,
M.
,
Külberg
,
A.
,
Weyers
,
M.
,
Kneissl
,
M.
, and
Jekel
,
M.
,
2011
, “
Application of GaN-Based Ultraviolet-C Light Emitting Diodes—UV LEDs—for Water Disinfection
,”
Water Res.
,
45
, pp.
1481
1489
.10.1016/j.watres.2010.11.015
4.
Reilly
,
D. M.
,
Moriarty
,
D. T.
, and
Maynard
,
J. A.
,
2004
, “
Unique Properties of Solar Blind Ultraviolet Communication Systems for Unattended Ground Sensor Networks
,”
Unmanned/Unattended Sensors and Sensor Networks
, Vol.
5611
,
E. M.
Carapezza
, ed., London, pp.
244
254
.
5.
Zukauskas
,
A.
,
Kurilcik
,
N.
,
Vitta
,
P.
,
Jursenas
,
S.
,
Bakiene
,
E.
, and
Gaska
,
R.
,
2006
, “
Optimization of a UV Light-Emitting Diode Based Fluorescence-Phase Sensor
,”
Optically Based Biological and Chemical Detection for Defence III
, Vol.
6398
, Stockholm, Sweden.
6.
Kneissl
,
M.
,
Kolbe
,
T.
,
Chua
,
C.
,
Kueller
, V
.
,
Lobo
,
N.
,
Stellmach
,
J.
,
Knauer
,
A.
,
Rodriguez
,
H.
,
Einfeldt
,
S.
,
Yang
,
Z.
,
Johnson
,
N. M.
, and
Weyers
,
M.
,
2011
, “
Advances in Group III-Nitride-Based Deep UV Light-Emitting Diode Technology
,”
Semicond. Sci. Technol.
,
26
, p.
014036
.10.1088/0268-1242/26/1/014036
7.
Pernot
,
C.
,
Kim
,
M.
,
Fukahori
,
S.
,
Inazu
,
T.
,
Fujita
,
T.
,
Nagasawa
,
Y.
,
Hirano
,
A.
,
Ippommatsu
,
M.
,
Iwaya
,
M.
,
Kamiyama
,
S.
,
Akasaki
, I
.
, and
Amano
,
H.
,
2010
, “
Improved Efficiency of 255-280 nm AlGaN-Based Light-Emitting Diodes
,”
Appl. Phys. Express
,
3
, p.
061004
.10.1143/APEX.3.061004
8.
Khan
,
A.
,
Balakrishnan
,
K.
, and
Katona
,
T.
,
2008
, “
Ultraviolet Light-Emitting Diodes Based on Group Three Nitrides
,”
Nat. Photonics
,
2
, pp.
77
84
.10.1038/nphoton.2007.293
9.
Khan
,
M. A.
,
2006
, “
AlGaN Multiple Quantum Well Based Deep UV LEDs and Their Applications
,”
Phys. Status Solidi A
,
203
, pp.
1764
1770
.10.1002/pssa.200565427
10.
Xi
,
Y.
,
Xi
,
J. Q.
,
Gessmann
,
T.
,
Shah
,
J. M.
,
Kim
,
J. K.
,
Schubert
,
E. F.
,
Fischer
,
A. J.
,
Crawford
,
M. H.
,
Bogart
,
K. H. A.
, and
Allerman
,
A. A.
,
2005
, “
Junction and Carrier Temperature Measurements in Deep-Ultraviolet Light-Emitting Diodes Using Three Different Methods
,”
Appl. Phys. Lett.
,
86
, p.
031907
.10.1063/1.1849838
11.
Kendig
,
D.
,
Yazawa
,
K.
, and
Shakouri
,
A.
,
2011
, “
Thermal Imaging of Encapsulated LEDs
,” 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp.
310
313
.
12.
Natarajan
,
S.
,
Watkins
,
B. G.
,
Adivarahan
, V
.
,
Khan
,
A.
, and
Graham
,
S.
,
2012
, “
Thermal Characterization of Discrete Device Layers in AlxGa1−xN Based Ultraviolet Light Emitting Diodes
,” 3rd ASME Micro/Nanoscale Heat & Mass Transfer International Conference,
Atlanta, GA
.
13.
Adivarahan
, V
.
,
Fareed
,
Q.
,
Srivastava
,
S.
,
Katona
,
T.
,
Gaevski
,
M.
, and
Khan
,
A.
,
2007
, “
Robust 285 nm Deep UV Light Emitting Diodes Over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates
,”
Jpn. J. Appl. Phys., Part 2
,
46
, pp.
L537
L539
.10.1143/JJAP.46.L537
14.
Adivarahan
, V
.
,
Heidari
,
A.
,
Zhang
,
B.
,
Fareed
,
Q.
,
Hwang
,
S.
,
Islam
,
M.
, and
Khan
,
A.
,
2009
, “
280 nm Deep Ultraviolet Light Emitting Diode Lamp With an AlGaN Multiple Quantum Well Active Region
,”
Appl. Phys. Express
,
2
, p.
102101
.10.1143/APEX.2.102101
15.
Hwang
,
S.
,
Islam
,
M.
,
Zhang
,
B.
,
Lachab
,
M.
,
Dion
,
J.
,
Heidari
,
A.
,
Nazir
,
H.
,
Adivarahan
, V
.
, and
Khan
,
A.
,
2011
, “
A Hybrid Micro-Pixel Based Deep Ultraviolet Light-Emitting Diode Lamp
,”
Appl. Phys. Express
,
4
, p.
012102
.10.1143/APEX.4.012102
16.
Grandusky
,
J. R.
,
Gibb
,
S. R.
,
Mendrick
,
M. C.
, and
Schowalter
,
L. J.
,
2010
, “
Properties of Mid-Ultraviolet Light Emitting Diodes Fabricated From Pseudomorphic Layers on Bulk Aluminum Nitride Substrates
,”
Appl. Phys. Express
,
3
, p.
072103
.10.1143/APEX.3.072103
17.
Grandusky
,
J.
,
Cui
,
Y.
,
Gibb
,
S.
,
Mendrick
,
M.
, and
Schowalter
,
L.
,
2010
, “
Performance and Reliability of Ultraviolet-C Pseudomorphic Light Emitting Diodes on Bulk AlN Substrates
,”
Phys. Status Solidi C
,
7
, pp.
2199
2201
.10.1002/pssc.200983635
18.
Grandusky
,
J. R.
,
Gibb
,
S. R.
,
Mendrick
,
M. C.
,
Moe
,
C.
,
Wraback
,
M.
, and
Schowalter
,
L. J.
,
2011
, “
High Output Power From 260 nm Pseudomorphic Ultraviolet Light-Emitting Diodes With Improved Thermal Performance
,”
Appl. Phys. Express
,
4
, p.
082101
.10.1143/APEX.4.082101
19.
Beechem
,
T. E.
, and
Serrano
,
J. R.
,
2011
, “
Raman Thermometry of Microdevices: Choosing a Method to Minimize Error
,”
Spectroscopy
,
26
, pp.
36
44
. Available at http://www.spectroscopyonline.com/spectroscopy/article/articleDetail.jsp?id=749075&sk=&date=&pageID=5
20.
Beechem
,
T.
,
Christensen
,
A.
,
Graham
,
S.
, and
Green
,
D.
,
2008
, “
Micro-Raman Thermometry in the Presence of Complex Stresses in GaN Devices
,”
J. Appl. Phys.
,
103
, p.
124501
.
21.
Parayanthal
,
P.
, and
Pollak
,
F. H.
,
1984
, “
Raman Scattering in Alloy Semiconductors—Spatial Correlation Model
,”
Phys. Rev. Lett.
,
52
, pp.
1822
1825
.10.1103/PhysRevLett.52.1822
22.
Xi
,
Y.
,
Gessmann
,
T.
,
Xi
,
J.
,
Kim
,
J. K.
,
Shah
,
J. M.
,
Schubert
,
E. F.
,
Fischer
,
A. J.
,
Crawford
,
M. H.
,
Bogart
,
K. H. A.
, and
Allerman
,
A. A.
,
2005
, “
Junction Temperature in Ultraviolet Light-Emitting Diodes
,”
Jpn. J. Appl. Phys.
,
44
, pp.
7260
7266
.10.1143/JJAP.44.7260
23.
Xi
,
Y.
, and
Schubert
,
E. F.
,
2004
, “
Junction–Temperature Measurement in GaN Ultraviolet Light-Emitting Diodes Using Diode Forward Voltage Method
,”
Appl. Phys. Lett.
,
85
, pp.
2163
2165
.10.1063/1.1795351
24.
Meneghini
,
M.
,
Tazzoli
,
A.
,
Mura
,
G.
,
Meneghesso
,
G.
, and
Zanoni
,
E.
,
2010
, “
A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs
,”
IEEE Trans. Electron. Devices
,
57
, pp.
108
118
.10.1109/TED.2009.2033649
You do not currently have access to this content.