Accurate thermal conductivity values are essential for the successful modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure the thermal conductivity of these systems, as well as the thermal conductivity itself, varies with the device materials, fabrication processes, geometry, and operating conditions. In this study, the thermal conductivities of boron doped single-crystal silicon microbridges fabricated using silicon-on-insulator (SOI) wafers are measured over the temperature range from 80 to 350 K. The microbridges are 4.6 mm long, 125 μm tall, and either 50 or 85 μm wide. Measurements on the 85 μm wide microbridges are made using both steady-state electrical resistance thermometry (SSERT) and optical time-domain thermoreflectance (TDTR). A thermal conductivity of 77 Wm−1 K−1 is measured for both microbridge widths at room temperature, where the results of both experimental techniques agree. However, increasing discrepancies between the thermal conductivities measured by each technique are found with decreasing temperatures below 300 K. The reduction in thermal conductivity measured by TDTR is primarily attributed to a ballistic thermal resistance contributed by phonons with mean free paths larger than the TDTR pump beam diameter. Boltzmann transport equation (BTE) modeling under the relaxation time approximation (RTA) is used to investigate the discrepancies and emphasizes the role of different interaction volumes in explaining the underprediction of TDTR measurements.

References

References
1.
Dwyer
,
V.
,
Franklin
,
A.
, and
Campbell
,
D.
,
1990
, “
Thermal Failure in Semiconductor Devices
,”
Solid-State Electron.
,
33
(
5
), pp.
553
560
.10.1016/0038-1101(90)90239-B
2.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
3.
Liu
,
W.
, and
Asheghi
,
M.
,
2005
, “
Impact of Phonon-Boundary Scattering and Multilevel Copper-Dielectric Interconnect System on Self-Heating of SOI Transistors
,” Twenty First Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp.
243
246
.
4.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
, pp.
147
169
.10.1007/s12274-010-1019-z
5.
Phinney
,
L. M.
,
Lu
,
W.-Y.
, and
Serrano
,
J. R.
,
2011
, “
Raman and Infrared Thermometry for Microsystems
,” Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference (AJTEC2011)(44097).
6.
Phinney
,
L. M.
,
Baker
,
M. S.
, and
Serrano
,
J. R.
,
2012
, “
Thermal Microactuators
,”
Microelectromechanical Systems and Devices
, InTech, Rijeka, Croatia, pp.
415
434
.
7.
McConnell
,
A. D.
, and
Goodson
,
K. E.
,
2005
, “
Thermal Conduction in Silicon Micro- and Nanostructures
,”
Annu. Rev. Heat Transfer
,
14
, pp.
129
168
.10.1615/AnnualRevHeatTransfer.v14.120
8.
Liu
,
W.
, and
Asheghi
,
M.
,
2004
, “
Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers
,”
J. Appl. Phys.
,
84
(
19
), pp.
3819
3821
.10.1063/1.1741039
9.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
, pp.
223
241
.10.1115/1.1454111
10.
Koh
,
Y. K.
,
Singer
,
S. L.
,
Kim
,
W.
,
Zine
,
J. M. O.
,
Lu
,
H.
,
Cahill
,
D. G.
,
Majumdar
,
A.
, and
Gossard
,
A. C.
,
2009
, “
Comparison of the 3ω Method and Time-Domain Thermoreflectance for Measurements of the Cross-Plane Thermal Conductivity of Epitaxial Semiconductors
,”
J. Appl. Phys.
,
105
, p.
054303
.10.1063/1.3078808
11.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
,
1997
, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.10.1063/1.119402
12.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
,
2002
, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
,
91
(
8
), pp.
5079
5088
.10.1063/1.1458057
13.
Goodson
,
K. E.
, and
Flik
,
M. I.
,
1994
, “
Solid Layer Thermal-Conductivity Measurement Techniques
,”
Appl. Mech. Rev.
,
47
(
3
), pp.
101
112
.10.1115/1.3111073
14.
Borca-Tasciuc
,
T.
, and
Chen
,
G.
,
2004
, “
Experimental Techniques for Thin-Film Thermal Conductivity Characterization
,”
Thermal Conductivity
,
T. M.
Tritt
,
J. T.
Devreese
,
R. P.
Evrary
,
S.
Lundqvist
,
G. D.
Mahan
, and
N. H.
March
, eds. (Physics of Solids and Liquids),
Springer
,
New York
, pp.
205
237
.
15.
Léonard
,
F.
,
2011
, “
Reduced Joule Heating in Nanowires
,”
Appl. Phys. Lett.
,
98
(
10
), p.
103101
.10.1063/1.3561772
16.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
,
1988
, “
Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
,
63
(
5
), pp.
1442
1447
.10.1063/1.339924
17.
Reifenberg
,
J.
,
Voss
,
R. E.
,
Rao
,
P.
,
Schmitt
,
W.
,
Yang
,
Y.
,
Shojaei-Zadeh
,
S.
,
Liu
,
W.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
,
2003
, “
Thermal Conductivity Measurements of Thin Aluminum Layers Using Steady State Joule Heating and Electrical Resistance Thermometry in Suspended Bridges
,” Proceedings of ASME IMECE03(42055), pp.
377
380
.
18.
Yang
,
Y.
, and
Asheghi
,
M.
,
2004
, “
A Novel Technique for In-Plane Thermal Conductivity Measurements of Electrically Conductive Interconnects and Nanostructures
,” Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM’04, The Ninth Intersociety Conference on, Vol.
2
, pp.
564
569
.
19.
Shojaei-Zadeh
,
S.
,
Zhang
,
S.
,
Liu
,
W.
,
Yang
,
Y.
,
Sadeghipour
,
S.
,
Asheghi
,
M.
, and
Sverdrup
,
P.
,
2004
, “
Thermal Characterization of Thin Film Cu Interconnects for the Next Generation of Microelectronic Devices
,” Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM'04, The Ninth Intersociety Conference on, Vol.
2
, pp.
575
583
.
20.
Phinney
,
L. M.
,
Serrano
,
J. R.
,
Piekos
,
E. S.
,
Torczynski
,
J. R.
,
Gallis
,
M. A.
, and
Gorby
,
A. D.
,
2010
, “
Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072402
.10.1115/1.4000965
21.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: the 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
22.
Dames
,
C.
, and
Chen
,
G.
,
2005
, “
1ω, 2ω, and 3ω Methods for Measurments of Thermal Properties
,”
Rev. Sci. Instrum.
,
76
, p.
124902
.10.1063/1.2130718
23.
Paddock
,
C. A.
, and
Eesley
,
G. L.
,
1986
, “
Transient Thermoreflectance From Thin Metal Films
,”
J. Appl. Phys.
,
60
(
1
), pp.
285
290
.10.1063/1.337642
24.
Clemens
,
B. M.
,
Eesley
,
G. L.
, and
Paddock
,
C. A.
,
1988
, “
Time-Resolved Thermal Transport in Compositionally Modulated Metal Films
,”
Phys. Rev. B
,
37
(
3
), pp.
1085
1096
.10.1103/PhysRevB.37.1085
25.
Koh
,
Y. K.
, and
Cahill
,
D. G.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B
,
76
, p.
075207
.10.1103/PhysRevB.76.075207
26.
Hopkins
,
P. E.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
,
Kearney
,
S. P.
,
Grasser
,
T. W.
, and
Harris
,
C. T.
,
2010
, “
Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081302
.10.1115/1.4000993
27.
Cahill
,
D. G.
, and
Watanabe
,
F.
,
2004
, “
Thermal Conductivity of Isotopically Pure and Ge-Doped Si Epitaxial Layers From 300 to 550K
,”
Phys. Rev. B
,
70
(
23
), p.
235322
.10.1103/PhysRevB.70.235322
28.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
, p.
114902
.10.1063/1.3006335
29.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
(
12
), pp.
8105
8113
.10.1103/PhysRevB.59.8105
30.
Bloch
,
F.
,
1930
, “
Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen
,”
Z. Phys. A: Hadrons Nucl.
,
59
, pp.
208
214
.10.1007/BF01341426
31.
Tas
,
G.
, and
Maris
,
H. J.
,
1994
, “
Electron Diffusion in Metals Studied by Picosecond Ultrasonics
,”
Phys. Rev. B
,
49
, pp.
15046
15054
.10.1103/PhysRevB.49.15046
32.
Thomsen
,
C.
,
Strait
,
J.
,
Vardeny
,
Z.
,
Maris
,
H. J.
,
Tauc
,
J.
, and
Hauser
,
J. J.
,
1984
, “
Coherent Phonon Generation and Detection by Picosecond Light Pulses
,”
Phys. Rev. Lett.
,
53
, pp.
989
992
.10.1103/PhysRevLett.53.989
33.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.10.1063/1.1819431
34.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1970
,
Thermophysical Properties of Matter—Specific Heat: Nonmetallic Solids
, Vol.
5
,
IFI/Plenum
,
New York
.
35.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
,
1970
,
Thermophysical Properties of Matter—Specific Heat: Metallic Elements and Alloys
, Vol.
4
,
IFI/Plenum
,
New York
.
36.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
(
2
), pp.
279
421
.10.1063/1.3253100
37.
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
Kearney
,
S. P.
,
2006
, “
Micro-Raman Thermometry of Thermal Flexure Actuators
,”
J. Micromechan. Microeng.
,
16
(
7
), p.
1128
.10.1088/0960-1317/16/7/004
38.
Beechem
,
T.
,
Graham
,
S.
,
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Serrano
,
J. R.
,
2007
, “
Simultaneous Mapping of Temperature and Stress in Microdevices Using Micro-Raman Spectroscopy
,”
Rev. Sci. Instrum.
,
78
(
6
), p.
061301
.10.1063/1.2738946
39.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
, p.
095901
.10.1103/PhysRevLett.107.095901
40.
Minnich
,
A. J.
,
Chen
,
G.
,
Mansoor
,
S.
, and
Yilbas
,
B. S.
,
2011
, “
Quasiballistic Heat Transfer Studied Using the Frequency-Dependent Boltzmann Transport Equation
,”
Phys. Rev. B
,
84
, p.
235207
.10.1103/PhysRevB.84.235207
41.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
(
4
), pp.
1046
1051
.10.1103/PhysRev.113.1046
42.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
43.
Weber
,
W.
,
1977
, “
Adiabatic Bond Charge Model for the Phonons in Diamond, Si, Ge, and α-Sn
,”
Phys. Rev. B
,
15
(
10
), pp.
4789
4803
.10.1103/PhysRevB.15.4789
44.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
1976
.
Solid State Physics
,
Saunders College Publishers
,
Orlando, FL
.
45.
Liu
,
W.
, and
Asheghi
,
M.
,
2005
, “
Thermal Conduction in Ultrathin Pure and Doped Single-Crystal Silicon Layers at High Temperatures
,”
J. Appl. Phys.
,
98
(
12
), p.
123523
.10.1063/1.2149497
46.
Fortier
,
D.
,
Djerassi
,
H.
,
Suzuki
,
K.
, and
Albany
,
H. J.
,
1974
, “
Scattering of Thermal Phonons by Li-O Donors in Si
,”
Phys. Rev. B
,
9
, pp.
4340
4343
.10.1103/PhysRevB.9.4340
47.
Verma
,
G. S.
,
1978
, “
Role of Oxygen Atoms in the Phonon Conductivity of Si Containing 5 × 1017 Oxygen Atoms per cm3
,”
Phys. Rev. B
,
18
, pp.
5903
5905
.10.1103/PhysRevB.18.5903
48.
Klemens
,
P. G.
,
1955
, “
The Scattering of Low-Frequency Lattice Waves by Static Imperfections
,”
Proc. Phys. Soc., London
,
68
,
p. 1113
.10.1088/0370-1298/68/12/303
49.
Dai
,
P.
,
Zhang
,
Y.
, and
Sarachik
,
M. P.
,
1991
, “
Critical Conductivity Exponent for Si:B
,”
Phys. Rev. Lett.
,
66
, pp.
1914
1917
.10.1103/PhysRevLett.66.1914
50.
Ziman
,
J. M.
,
1956
, “
The Effect of Free Electrons on Lattice Conduction
,”
Philos. Mag.
,
1
(
2
), pp.
191
198
.10.1080/14786435608238092
51.
Kosarev
,
V. V.
,
1971
, “
Scattering of Phonons by Carriers in the Field of Charged Impurities
,”
Sov. Phys. JEPT
,
33
,
p. 793
.
52.
Radhakrishnan
,
V.
, and
Sharma
,
P. C.
,
1980
, “
Electron-Phonon Scattering in Li-Doped Silicon in the Intermediate Concentration Region
,”
J. Phys. C: Solid State Phys.
,
13
(
10
), p.
2001
.10.1088/0022-3719/13/10/020
53.
Ziman
,
J. M.
,
1960
,
Electrons and Phonons
,
2nd ed.
,
Oxford University Press
, New York.
54.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2012
, “
Direct Measurement of Room Temperature Non-Diffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
, p.
025901
.10.1103/PhysRevLett.110.025901
You do not currently have access to this content.