Heat transfer and fluid flow in microchannels have been topics of intense research in the past decade. A critical review of the current state of research is presented with a focus on the future research needs. After providing a brief introduction, the paper addresses six topics related to transport phenomena in microchannels: single-phase gas flow, enhancement in single-phase liquid flow and flow boiling, flow boiling instability, condensation, electronics cooling, and microscale heat exchangers. After reviewing the current status, future research directions are suggested. Concerning gas phase convective heat transfer in microchannels, the antagonist role played by the slip velocity and the temperature jump that appear at the wall are now clearly understood and quantified. It has also been demonstrated that the shear work due to the slipping fluid increases the effect of viscous heating on heat transfer. On the other hand, very few experiments support the theoretical models and a significant effort should be made in this direction, especially for measurement of temperature fields within the gas in microchannels, implementing promising recent techniques such as molecular tagging thermometry (MTT). The single-phase liquid flow in microchannels has been established to behave similar to the macroscale flows. The current need is in the area of further enhancing the performance. Progress on implementation of flow boiling in microchannels is facing challenges due to its lower heat transfer coefficients and critical heat flux (CHF) limits. An immediate need for breakthrough research related to these two areas is identified. Discussion about passive and active methods to suppress flow boiling instabilities is presented. Future research focus on instability research is suggested on developing active closed loop feedback control methods, extending current models to better predict and enable superior control of flow instabilities. Innovative high-speed visualization and measurement techniques have led to microchannel condensation now being studied as a unique process with its own governing influences. Further work is required to develop widely applicable flow regime maps that can address many fluid types and geometries. With this, condensation heat transfer models can progress from primarily annular flow based models with some adjustments using dimensionless parameters to those that can directly account for transport in intermittent and other flows, and the varying influences of tube shape, surface tension and fluid property differences over much larger ranges than currently possible. Electronics cooling continues to be the main driver for improving thermal transport processes in microchannels, while efforts are warranted to develop high performance heat exchangers with microscale passages. Specific areas related to enhancement, novel configurations, nanostructures and practical implementation are expected to be the research focus in the coming years.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
EDL-2
, pp.
126
129
.10.1109/EDL.1981.25367
2.
Colin
,
S.
,
2005
, “
Rarefaction and Compressibility Effects on Steady and Transient Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
268
279
.10.1007/s10404-004-0002-y
3.
Young
,
J. B.
,
2011
, “
Calculation of Knudsen Layers and Jump Conditions Using the Linearized G13 and R13 Moment Methods
,”
Int. J. Heat Mass Transfer
,
54
(
13-14
), pp.
2902
2912
.10.1016/j.ijheatmasstransfer.2011.03.009
4.
Zhang
,
W.-M.
,
Meng
,
G.
, and
Wei
,
X.
,
2012
, “
A Review on Slip Models for Gas Microflows
,”
Microfluid. Nanofluid.
,
13
(
6
), pp.
845
882
.10.1007/s10404-012-1012-9
5.
Sharipov
,
F.
,
2011
, “
Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface
,”
J. Phys. Chem. Ref. Data
,
40
(
2
), p.
023101
.10.1063/1.3580290
6.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020908
.10.1115/1.4005063
7.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
ASME J. Heat Transfer
,
84
, pp.
363
369
.10.1115/1.3684399
8.
Zhu
,
X.
,
Xin
,
M. D.
, and
Liao
,
Q.
,
2002
, “
Analysis of Heat Transfer Between Two Unsymmetrically Heated Parallel Plates With Microspacing in the Slip Flow Regime
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
287
301
.10.1080/10893950290098311
9.
Kuddusi
,
L.
, and
Cetegen
,
E.
,
2007
, “
Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for All Versions of Constant Heat Flux
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
777
786
.10.1016/j.ijheatfluidflow.2006.09.002
10.
Yu
,
S.
, and
Ameel
,
T. A.
,
2001
, “
Slip-Flow Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4225
4234
.10.1016/S0017-9310(01)00075-8
11.
Zhu
,
X.
,
Liao
,
Q.
, and
Xin
,
M.
,
2004
, “
Analysis of the Heat Transfer in Unsymmetrically Heated Triangular Microchannels in Slip Flow Regime
,”
Sci. China, Ser. E: Technol. Sci.
,
47
(
4
), pp.
436
446
.10.1360/03ye0174
12.
Jeong
,
H.
, and
Jeong
,
J.
,
2006
, “
Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube
,”
J. Mech. Sci. Technol.
,
20
(
1
), pp.
158
166
.10.1007/BF02916209
13.
Jeong
,
H.-E.
, and
Jeong
,
J.-T.
,
2006
, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel
,”
Int. J. Heat Mass Transfer
,
49
(
13-14
), pp.
2151
2157
.10.1016/j.ijheatmasstransfer.2005.11.026
14.
Hong
,
C.
, and
Asako
,
Y.
,
2010
, “
Some Considerations on Thermal Boundary Condition of Slip Flow
,”
Int. J. Heat Mass Transfer
,
53
(
15-16
), pp.
3075
3079
.10.1016/j.ijheatmasstransfer.2010.03.020
15.
Miyamoto
,
M.
,
Shi
,
W.
,
Katoh
,
Y.
, and
Kurima
,
J.
,
2003
, “
Choked Flow and Heat Transfer of Low Density Gas in a Narrow Parallel-Plate Channel With Uniformly Heating Walls
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2685
2693
.10.1016/S0017-9310(03)00030-9
16.
Hadjiconstantinou
,
N. G.
,
2003
, “
Dissipation in Small Scale Gaseous Flows
,”
ASME J. Heat Transfer
,
125
, pp.
944
947
.10.1115/1.1571088
17.
Hooman
,
K.
,
Hooman
,
F.
, and
Famouri
,
M.
,
2009
, “
Scaling Effects for Flow in Micro-Channels: Variable Property, Viscous Heating, Velocity Slip, and Temperature Jump
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
192
196
.10.1016/j.icheatmasstransfer.2008.10.003
18.
Morini
,
G. L.
,
Yang
,
Y.
,
Chalabi
,
H.
, and
Lorenzini
,
M.
,
2011
, “
A Critical Review of the Measurement Techniques for the Analysis of Gas Microflows Through Microchannels
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
849
865
.10.1016/j.expthermflusci.2011.02.005
19.
Shi
,
W.
,
Miyamoto
,
M.
,
Katoh
,
Y.
, and
Kurima
,
J.
,
2001
, “
Choked Flow of Low Density Gas in a Narrow Parallel-Plate Channel With Adiabatic Walls
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2555
2565
.10.1016/S0017-9310(00)00289-1
20.
Qazi Zade
,
A.
,
Renksizbulut
,
M.
, and
Friedman
,
J.
,
2011
, “
Heat Transfer Characteristics of Developing Gaseous Slip-Flow in Rectangular Microchannels With Variable Physical Properties
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
117
127
.10.1016/j.ijheatfluidflow.2010.10.004
21.
Sun
,
Z.
, and
Jaluria
,
Y.
,
2010
, “
Unsteady Two-Dimensional Nitrogen Flow in Long Microchannels With Uniform Wall Heat Flux
,”
Numer. Heat Transfer, Part A
,
57
(
9
), pp.
625
641
.10.1080/10407781003744615
22.
Hu
,
H.
,
Jin
,
Z.
,
Nocera
,
D.
,
Lum
,
C.
, and
Koochesfahani
,
M.
,
2010
, “
Experimental Investigations of Microscale Flow and Heat Transfer Phenomena by Using Molecular Tagging Techniques
,”
Meas. Sci. Technol.
,
21
(
8
), p.
085401
.10.1088/0957-0233/21/8/085401
23.
Garvey
,
J.
,
Newport
,
D.
,
Lakestani
,
F.
,
Whelan
,
M.
, and
Joseph
,
S.
,
2008
, “
Full Field Measurement at the Microscale Using Micro-Interferometry
,”
Microfluid. Nanofluid.
,
5
(
1
), pp.
77
87
.10.1007/s10404-007-0228-6
24.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
, p.
034001
.10.1115/1.4005126
25.
Goodling
,
J. S.
,
1993
, “
Microchannel Heat Exchangers: A Review
,”
Proceedings of High Heat Flux Engineering II
, July 12–13,
San Diego, CA
,
1997
, pp.
66
82
.
26.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.10.1080/10893950152646759
27.
Palm
,
B.
,
2001
, “
Heat Transfer in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
3
), pp.
155
175
.10.1080/108939501753222850
28.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
,
2003
, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
284
298
.10.1016/S0142-727X(03)00019-5
29.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2004
, “
Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Heat Transfer Eng.
,
25
(
8
), pp.
5
16
.10.1080/01457630490519772
30.
Tuckerman
,
D. B.
,
1984
, “
Heat Transfer Microstructures for Integrated Circuits
,” Ph.D. Dissertation, Stanford University, Stanford, CA.
31.
Tullius
,
J. F.
,
Vajtai
,
R.
, and
Bayazitoglu
,
2011
, “
A Review of Cooling in Microchannels
,”
Heat Transfer Eng.
,
32
(7-8), pp.
527
541
.10.1080/01457632.2010.506390
32.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
ASME 2nd International Conference on Microchannels and Minichannels
, June 17–19,
Rochester, NY
.
33.
Jasperson
,
B. A.
,
Jeon
,
Y.
,
Turner
,
K. T.
,
Pfefferkorn
,
F. E.
, and
Qu
,
W.
,
2010
, “
Comparison of Micro-Pin-Fin and Microchannel Heat Sinks Considering Thermal-Hydraulic Performance and Manufacturability
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
148
160
.10.1109/TCAPT.2009.2023980
34.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
, pp.
121
131
.10.1115/1.2137760
35.
John
,
J. T.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single-Phase Micro Pin-Fin Heat Sinks Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
, pp.
2177
2190
.10.1016/j.ijthermalsci.2010.06.011
36.
Vanapalli
,
S.
,
ter Brake
,
H. J. M.
,
Jansen
,
H. V.
,
Burger
,
J. F.
,
Holland
,
H. J.
,
Veenstra
,
TT.
, and
Elwenspock
,
M. C.
,
2007
, “
Pressure Drop of Laminar Gas Flows in a Microchannel Containing Various Pillar Matrices
,”
J. Micromech. Microeng.
,
17
, pp.
1381
1386
.10.1088/0960-1317/17/7/021
37.
Lee
,
Y.
,
Lee
,
P.
, and
Chou
,
S.
,
2009
, “
Enhanced Microchannel Heat Sinks Using Oblique Fins
,”
Proceedings of ASME IPACK2009-89059
,
San Francisco, CA
.
38.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J-Y.
,
Myers
,
Al.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
, pp.
141
153
.10.1115/1.2402179
39.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBlanca
,
N.
,
Magerlein
,
J.
,
Polastre
,
R.
,
Bezama
,
R. J.
,
Marston
,
K.
, and
Schmidt
,
R.
,
2007
, “
Higher Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
,
129
(
8
), pp.
1046
1051
.10.1115/1.2724850
40.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Liquid Heat Transfer Enhancement in Plain and Enhanced Microchannels
,”
ASME 4th International Conference on Microchannels and Minichannels
, June 19–21,
Limerick, Ireland
.
41.
Rubio-Jimenez
,
R.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
5
), pp.
825
833
.10.1109/TCPMT.2012.2189925
42.
Kandlikar
,
S. G.
,
Joshi
, and
Tian
,
S.
,
2003
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.10.1080/01457630304069
43.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase flow in Minichannels
,”
Phys. Fluids
,
17
, p.
100606
.10.1063/1.1896985
44.
Weaver
,
S. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
, p.
041014
.10.1115/1.4002991
45.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
, “
An Experimental Investigation of Structured Roughness Effect on Heat Transfer During Single-Phase Liquid Flow at Microscale
,”
ASME J. Heat Transfer
,
134
, p.
101701
.10.1115/1.4006844
46.
Liu
,
Y.
,
Cui
,
J.
,
Li
,
W.
,
Zhang
,
N.
,
2011
, “
Effect of Surface Microstructure on Microchannel Heat Transfer
,”
ASME J. Heat Transfer
,
133
, p.
124501
.10.1115/1.4004594
47.
Zhang
,
C.
,
Chen
,
Y.
, and
Shi
,
M.
,
2010
, “
Effects of Roughness Elements on Laminar Flow and Heat Transfer in Microchannels
,”
Chem. Eng. Process.
,
49
, pp.
1188
1192
.10.1016/j.cep.2010.08.022
48.
Moriyama
,
K.
,
Inoue
,
A.
, and
Ohira
,
H.
,
1992
, “
Thermohydraulic Characteristics of Two-Phase Flow in Extremely Narrow Channels (the Frictional Pressure Drop and Void Fraction of Adiabatic Two-Component Two-Phase Flow)
,”
Heat Transfer—Jpn. Res.
,
21
(
8
), pp.
823
837
.
49.
Peng
,
X. F.
, and
Wang
,
B. X.
,
1993
, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.10.1016/0017-9310(93)90160-8
50.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.10.1016/0017-9310(94)90103-1
51.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2000
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
1
), pp.
16
23
.
52.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
53.
Kandlikar
,
S. G.
,
2001
, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannel Flow Passages of Compact Evaporators
,” Compact Heat Exchangers and Enhancement Technology for the Process Industries, pp.
319
334
10.1080/014576302753249570
[
Heat Transfer Eng.
,
23
(
1
), pp.
5
23
,
2002
].
54.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2-4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
55.
Schilder
,
B.
,
Man
,
S. Y. C.
,
Kasagi
,
N.
,
Hardt
,
S.
, and
Stephan
,
P.
,
2010
, “
Flow Visualization and Local Measurement of Forced Convection Heat Transfer in a Microtube
,”
ASME J. Heat Transfer
,
132
(
3
), p.
031702
.10.1115/1.4000046
56.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.10.1016/j.ijmultiphaseflow.2009.01.003
57.
Cheng
,
P.
,
Wang
,
G.
, and
Quan
,
X.
,
2009
, “
Recent Work on Boiling and Condensation in Microchannels
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043211
.10.1115/1.3072906
58.
Kandlikar
,
S. G.
,
2011
,
Similarities and Differences between Flow Boiling in Microchannels and Pool Boiling
,”
Heat Transfer Eng.
,
31
(
3
), pp.
159
167
.10.1080/01457630903304335
59.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.10.1115/1.4003046
60.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
61.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2007
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1349
1364
.10.1016/j.ijheatmasstransfer.2007.11.026
62.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2011
, “
Experimental Study of Saturated Flow Boiling Heat Transfer in an Array of Staggered Micro-Pin-Fins
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1853
1863
.10.1016/j.ijheatmasstransfer.2008.10.008
63.
Xue
,
Y.
,
Yuan
,
M.
,
Ma
,
A.
, and
Wei
,
J.
,
2011
, “
Enhanced Boiling Heat Transfer by Using Micro-Pin-Finned Surface in Three Different Test Systems
,”
Heat Transfer Eng.
,
32
(
11-12
), pp.
1062
1068
.10.1080/01457632.2011.556501
64.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
,
2009
, “
Flow Boiling in a Micro-Channel Coated With Carbon Nanotubes
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
3
), pp.
639
649
.10.1109/TCAPT.2009.2015232
65.
Singh
,
N.
,
Sathyamurthy
,
V.
,
Peterson
,
W.
,
Arendt
,
J.
,
Banerjee
,
D.
,
2010
, “
Flow Boiling Enhancement on a Horizontal Heater Using Carbon Nanotube Coatings
,”
Int. J. Heat Fluid Flow
,
31
, pp.
201
207
.10.1016/j.ijheatfluidflow.2009.11.002
66.
Kousalya
,
A. S.
,
Hunter
,
C. N.
,
Putnam
,
S. A.
, and
Miller
,
T.
,
2012
, “
Photonically Enhanced Flow Boiling in a Channel Coated With Carbon Nanotubes
,”
Appl. Phys. Lett.
,
100
, p.
071601
.10.1063/1.3681594
67.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
,
2003
, “
Pool Boiling on a Superhydrophilic Surface
,”
Int. J. Energy Res.
,
27
(
2
), pp.
111
119
.10.1002/er.861
68.
Morshed
,
A. K. M. M.
,
Yang
,
F.
,
Ali
,
M. Y.
,
Khan
,
J. A.
, and
Li
,
C.
,
2012
, “
Enhanced Flow Boiling in a Microchannel With Integration of Nanowires
,”
Appl. Therm. Eng.
,
32
, pp.
68
75
.10.1016/j.applthermaleng.2011.08.031
69.
Koşar
,
A.
,
Kuo
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels With Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
70.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
, pp.
101
107
.10.1115/1.1839587
71.
Peles
,
Y.
,
2012
,
Contemporary Perspectives on Flow Instabilities in Microchannels
,
Begell House Inc.
, Redding, CT.
72.
Ledinegg
M.
,
1938
, “
Instability of Flow in Natural and Forced Circulation Systems
,”
Waerme
,
61
, pp.
891
898
.
73.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.10.1115/1.2908431
74.
Flynn
,
R. D.
,
Fogg
,
D. W.
,
Koo
,
J.-M.
,
Cheng
,
C.-H.
,
Goodson
,
K. E.
,
2006
, “
Boiling Flow Interaction Between Two Parallel Microchannels
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition
, Nov. 5–10,
Chicago, IL
, Paper No. IMECE2006-14696.
75.
Chen
,
T.
, and
Garimella
,
S. V.
,
2012
, “
A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011504
.10.1115/1.4004715
76.
Gambill
,
W. R.
, and
Lienhard
,
J. H.
,
1987
, “
An Upper Bound for the Critical Boiling Heat Flux
,”
Proceedings of ASME-JSME Thermal Engineering Joint Conference
,
3
, pp.
621
626
.
77.
Carey
,
V. P.
,
2007
,
Thermal Challenges in Next Generation Electronic Systems (THERMES 2007) Conference
,
Garimella
,
S. V.
and
Fleisher
,
A. S.
, eds.,
Santa Fe
,
NM
, Jan. 7–10.
78.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2009
, “
Flow Boiling of Coolant (HFE-7000) Inside Structured and Plain Wall Microchannels
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121011
.10.1115/1.3220674
79.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.10.1115/1.2165208
80.
Fu
,
B. R.
,
Tsou
,
M. S.
, and
Pan
,
C.
,
2012
, “
Boiling Heat Transfer and Critical Heat Flux of Ethanol-Water Mixtures Flowing Through a Diverging Microchannel With Artificial Cavities
,”
Int. J. Heat Mass Transfer
,
55
(
5-6
), pp.
1807
1814
.10.1016/j.ijheatmasstransfer.2011.11.051
81.
Liburdy
,
J. A.
,
Pence
,
D. V.
, and
Narayanan
,
V.
,
2008
, “
Flow Boiling Characteristics in a Fractal-Like Branching Microchannel Network
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE
, Vol. 10(A), pp.
97
106
.
82.
David
,
M. P.
,
Marconnet
,
A.
,
Goodson
,
K. E.
,
2008
, “
Hydrodynamic and Thermal Performance of a Vapor-Venting Microchannel Copper Heat Exchanger
,”
Proceedings of the 6th International Conference on Nanochannels
, Microchannels, and Minichannels, ICNMM2008, Part B, pp.
1363
1370
.
83.
Lee
,
J. Y.
,
Kim
,
M.-H.
,
Kaviany
,
M.
, and
Son
,
S. Y.
,
2011
, “
Bubble Nucleation in Microchannel Flow Boiling Using Single Artificial Cavity
,”
Int. J. Heat Mass Transfer
,
54
(
25-26
), pp.
5139
5148
.10.1016/j.ijheatmasstransfer.2011.08.042
84.
Ozawa
,
M.
,
Umekawa
,
H.
,
Mishima
,
K.
,
Hibiki
,
T.
, and
Saito
,
Y.
,
2001
, “
CHF in Oscillatory Flow Boiling Channels
,”
Trans IChemE, Part A
,
79
, pp.
389
401
.10.1205/026387601750282319
85.
Zhang
,
T. J.
,
Wen
,
J.
,
Peles
,
Y.
,
Catano
J. E.
,
Zhou
R.
,
Jensen
M.
,
2011
, “
Two-Phase Refrigerant Flow Instability Analysis and Active Control in Transient Electronics Cooling Systems
,”
Int. J. Multiphase Flow
,
37
(
1
), pp.
84
97
.10.1016/j.ijmultiphaseflow.2010.07.003
86.
Zhang
T.
,
Wen John
T.
,
Julius
A.
,
Peles
Y.
, and
Jensen
M. K.
,
2011
, “
Stability Analysis and Maldistribution Control of Two-Phase Flow in Parallel Evaporating Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25-26
), pp.
5298
5305
.10.1016/j.ijheatmasstransfer.2011.08.013
87.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2000
, “
Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter
,”
Proceedings of ASME Heat Transfer Division—2000, American Society of Mechanical Engineers
, pp.
71
83
.
88.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2000
, “
Visualization of Refrigerant Two-Phase Flow During Condensation
,”
Proceedings of 34th National Heat Transfer Conference
, Aug. 20–22,
Pittsburgh, Pennsylvania
, ASME, Paper No. NHTC2000-12115.
89.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2003
, “
Two-Phase Flow Regimes in Round, Square and Rectangular Tubes During Condensation of Refrigerant R134a
,”
Int. J. Refrigeration
,
26
(
1
), pp.
117
128
.10.1016/S0140-7007(02)00013-0
90.
Keinath
,
B. L.
, and
Garimella
,
S.
,
2010
, “
Bubble and Film Dynamics During Condensation of Refrigerants in Minichannels
,”
14th International Heat Transfer Conference (IHTC14), ASME
,
Washington, DC
, pp.
177
186
.
91.
Winkler
,
J.
,
Killion
,
J.
, and
Garimella
,
S.
,
2012
, “
Void Fractions for Condensing Refrigerant Flow in Small Channels. Part II: Void Fraction Measurement and Modeling
,”
Int J. Refrigeration
,
35
(
2
), pp.
246
262
.10.1016/j.ijrefrig.2011.08.012
92.
Keinath
,
B. L.
, and
Garimella
,
S.
,
2011
, “
Void Fraction and Pressure Drop During Condensation of Refrigerants in Minichannels
,”
6th International Berlin Workshop on Transport Phenomena With Moving Boundaries
.
93.
Cavallini
,
A.
,
Col
,
D. D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
,
2005
, “
Condensation Heat Transfer and Pressure Gradient Inside Multiport Minichannels
,”
Heat Transfer Eng.
,
26
(
3
), pp.
45
55
.10.1080/01457630590907194
94.
Cavallini
,
A.
,
Del Col
,
D.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2009
, “
Frictional Pressure Drop During Vapour-Liquid Flow in Minichannels: Modelling and Experimental Evaluation
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
131
139
.10.1016/j.ijheatfluidflow.2008.09.003
95.
Cavallini
,
A.
,
Doretti
,
L.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2006
, “
Update on Condensation Heat Transfer and Pressure Drop inside Minichannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
74
87
.10.1080/01457630500523907
96.
Del Col
,
D.
,
Torresin
,
D.
, and
Cavallini
,
A.
,
2010
, “
Heat Transfer and Pressure Drop During Condensation of the Low GWP Refrigerant R1234yf
,”
Int. J. Refrigeration
,
33
(
7
), pp.
1307
1318
.10.1016/j.ijrefrig.2010.07.020
97.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
, “
A Model for Condensation in Minichannels
,”
Proceedings of 2005 ASME Summer Heat Transfer Conference, ASME
, pp.
297
304
.
98.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow (Paper E2)
,” European Two Phase Flow Group Meeting, Ispra, Italy.
99.
Garimella
,
S.
,
Agarwal
,
A.
, and
Killion
,
J. D.
,
2005
, “
Condensation Pressure Drop in Circular Microchannels
,”
Heat Transfer Eng.
,
26
(
3
), pp.
1
8
.10.1080/01457630590907176
100.
Agarwal
,
A.
, and
Garimella
,
S.
,
2009
, “
Modeling of Pressure Drop During Condensation in Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
131
(
1
), p.
011302
.10.1115/1.3026582
101.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
,
2002
, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
205
214
.10.1115/1.1428327
102.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
,
2003
, “
An Expermentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
887
894
.10.1115/1.1601258
103.
Garimella
,
S.
,
Agarwal
,
A.
, and
Coleman
,
J. W.
,
2003
, “
Two-Phase Pressure Drops in the Annular Flow Regime in Circular Microchannels
,”
Proceedings of 21st IIR International Congress of Refrigeration
, Aug. 12–22,
Washington, DC
, Paper No. ICR0360, International Institute of Refrigeration.
104.
Baroczy
,
C. J.
,
1965
, “
Correlation of Liquid Fraction in Two-Phase Flow With Applications to Liquid Metals
,”
Chem. Eng. Prog., Symp. Ser.
,
61
(
57
), pp.
179
191
.
105.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.10.1080/01457630600793970
106.
Garimella
,
S.
, and
Bandhauer
,
T. M.
,
2001
, “
Measurement of condensation heat transfer coefficients in microchannel tubes
,”
Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition
, Nov. 11–16, American Society of Mechanical Engineers, pp.
243
249
.
107.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
,
2006
, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1050
1059
.10.1115/1.2345427
108.
Agarwal
,
A.
,
Bandhauer
,
T. M.
, and
Garimella
,
S.
,
2010
, “
Measurement and Modeling of Condensation Heat Transfer in Non-Circular Microchannels
,”
Int. J. Refrigeration
,
33
(
6
), pp.
1169
1179
.10.1016/j.ijrefrig.2009.12.033
109.
Traviss
,
D. P.
,
Rohsenow
,
W. M.
, and
Baron
,
A. B.
,
1973
, “
Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design
,”
ASHRAE Trans.
,
79
(
Part 1
), pp.
157
165
.
110.
Agarwal
,
A.
, and
Garimella
,
S.
,
2010
, “
Representative Results for Condensation Measurements at Hydraulic Diameters ∼100 Microns
,”
ASME J. Heat Transfer
,
132
(
4
), pp.
1
12
.10.1115/1.4000879
111.
Agarwal
,
A.
,
2006
, “
Heat Transfer and Pressure Drop During Condensation of Refrigerants in Microchannels
,” Ph.D, Georgia Institute of Technology, Atlanta, GA.
112.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2005
, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1096
1105
.10.1115/1.2033905
113.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2011
, “
Theory of Heat Transfer During Condensation in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2525
2534
.10.1016/j.ijheatmasstransfer.2011.02.009
114.
Nebuloni
,
S.
, and
Thome
,
J. R.
,
2012
, “
Numerical Modeling of the Conjugate Heat Transfer Problem for Annular Laminar Film Condensation in Microchannels
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051021
.10.1115/1.4005712
115.
Da Riva
,
E.
, and
Del Col
,
D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051019
.10.1115/1.4005710
116.
Oktay
,
S.
, and
Kammerer
,
H. C.
,
1982
, “
A Conduction Cooled Module for High Performance LSI Devices
,”
IBM J. Res. Dev.
,
26
(
1
), pp.
55
56
.
117.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J.-M.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
Goodson
,
K. E.
,
2002
, “
Closed-Loop Electroosmotic Cooling System for VLSI Circuits
,”
IEEE Proceedings on Components, Packaging, and Manufacturing Technology
, 25, pp.
347
355
.
118.
Topol
,
A. W.
,
La Tulipe
,
D. C.
,
Shi
,
L.
,
Alam
,
S. M.
,
Frank
,
D. J.
,
Steen
,
S. E.
,
Vichiconti
,
J.
,
Posillico
,
D.
,
Cobb
,
M.
,
Medd
,
S.
,
Patel
,
J.
,
Goma
,
S.
,
DiMilia
,
D.
,
Robson
,
M. T.
,
Duch
,
E.
,
Farinelli
,
M.
,
Wang
,
C.
,
Conti
,
R. A.
,
Canaperi
,
D. M.
,
Deligianni
,
L.
,
Kumar
,
A.
,
Kwietniak
,
K. T.
,
D'Emic
,
C.
,
Ott
,
J.
,
Young
,
A. M.
,
Guarini
,
K. W.
, and
Ieong
,
M.
,
2005
, “
Enabling SOI-Based Assembly Technology for Three-Dimensional (3D) Integrated Circuits (ICs)
IEEE Electron Devices Meeting, TECHNICAL DIGEST Book Series
, pp.
363
366
.
119.
Rajendran
,
B.
,
Shenoy
,
R. S.
,
Witte
,
D. J.
,
Chokshi
,
N. S.
,
DeLeon
,
R. L.
,
Tompa
,
G. S.
, and
Pease
,
R. F. W.
,
2007
, “
Low Thermal Budget Processing for Sequential 3-D IC Fabrication
,”
IEEE Trans. Electron Devices
,
54
, pp.
707
714
.10.1109/TED.2007.891300
120.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Circuit Architectures
,”
ASME J. Heat Transfer
,
127
, pp.
49
58
.10.1115/1.1839582
121.
Kercher
,
D. S.
,
Lee
,
B.-J.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glazer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
),
359
366
.10.1109/TCAPT.2003.815116
122.
Brandner
,
J. J.
,
Bohn
,
L.
,
Henning
,
T.
,
Schygulla
,
U.
, and
Schuberth
,
K.
,
2007
, “
Microstructure Heat Exchanger Applications in Laboratory and Industry
,”
Heat Transfer Eng.
,
28
(
8
), pp.
761
771
.10.1080/01457630701328528
123.
Brandner
,
J. J.
,
Bohn
,
L.
,
Henning
,
T.
,
Schygulla
,
U.
, and
Schuberth
,
K.
,
2009
, “
A Micro Heat Exchanger for High Heat Flux
,”
Proceedings of AIChE Spring Meeting
,
Tampa, FL
, Apr. 26–30.
124.
Schygulla
,
U.
,
Brandner
,
J. J.
,
Anurjew
,
E.
,
Hansjosten
,
E.
, and
Schubert
,
K.
,
2008
, “
Micro Heat Exchangers and Surface Micro Coolers for High Heat Flux
,”
Proceedings of 6th Int. Conf. on Nano, Micro and Minichannels ICNMM2008
,
Darmstadt, Germany
, June 23–26.
125.
Gao
,
Y.
,
Marconnet
,
A.
,
Panzer
,
M.
,
LeBlanc
,
S.
,
Dogbe
,
S.
,
Ezzahri
,
Y.
,
Shakouri
,
A.
, and
Goodson
,
K.
,
2010
, “
Nanostructured Interfaces for Thermoelectrics
,”
J. Electron. Mater.
,
39
, pp.
1456
1462
.10.1007/s11664-010-1256-7
126.
Herwig
,
H.
,
2006
, “
Micro Process Engineering: Fundamentals, Devices, Fabrication and Applications
,”
Kockmann
,
N.
, ed.,
Advanced Micro and Nano Systems
, Vol.
5
,
Wiley-VCH
,
Weinheim, Germany
, Momentum and Heat Transfer in Micro Devices, pp.
47
70
.
127.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
128.
Celata
,
G. P.
,
2004
,
Heat Transfer and Fluid Flow in Microchannels
,
Begell House
,
New York
.
129.
Morini
,
G. L.
,
2005
, “
Single Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
, pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
130.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Salvigni
,
S.
, and
Celata
,
G. P.
,
2010
, “
Experimental Analysis of Microconvective Heat Transfer in the Laminar and Transitional Regime
,”
Exp. Heat Transfer
,
23
(
1
), pp.
73
93
.10.1080/08916150903402757
131.
Gnielinski
,
V.
,
2010
, “
Heat Transfer in the Flow Through a Pipe
,”
VDI Heat Atlas
,
2nd ed.
,
Springer
,
Heidelberg, Germany
.
132.
Hessel
,
V.
;
Hardt
,
S.
;
Yoshida
,
J. I.
,
2010
,
Micro Process Engineering
,
Wiley-VCH
,
Weinheim, Germany
.
133.
Wang
,
X-Q.
,
Majumdar
,
A.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
134.
Tuckerman
,
D.
,
Pease
,
R. F. W.
,
Guo
,
Z.
,
Hu
,
J. E.
,
Yildirim
,
O.
,
Deane
,
G.
, and
Wood
,
L.
,
2011
, “
Microchannel Heat Transfer: Early History, Commercial Applications, and Emerging Opportunities
,”
Proceedings of ASME 9th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2011), ASME
, pp.
739
756
.
135.
Chandokar
,
S.
, and
Pease
,
R. F. W.
,
2009
, “
Theoretical Analysis of Thermal Actuator Based Nanoimprint Lithography
,”
Proceedings of NNT2009
,
San Jose, CA
.
You do not currently have access to this content.