A mathematical method is described for the analytical solution of the convective heat transfer rates from a rotating isothermal and porous disk in a uniform flow field. By applying the appropriate velocity component of the fluid in the energy equation, a similarity solution was derived showing an increase in the rates of heat transfer with increasing rotational Reynolds number and with decreasing flow Reynolds number. Effects of natural convection and viscous dissipation were assumed negligible.

References

References
1.
Herrero
,
J.
,
Humphrey
,
J. A. C.
, and
Giralt
,
F.
,
1994
, “
Comparative Analysis of Coupled Flow and Heat Transfer Between Co-Rotating Discs in Rotating and Fixed Cylindrical Enclosures
,”
Heat Transfer in Gas Turbines, HTD-Vol. 300
,
M. K.
Chyu
and
N. V.
Nirmalan
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
111
121
.
2.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating Disk Systems
(Rotor-Stator Systems, Vol. 1),
Wiley
,
New York
.
3.
Abdul Maleque
,
Kh.
, and
Abdus Sattar
,
Md.
,
2005
, “
Steady Laminar Convective Flow With Variable Properties Due to a Porous Rotating Disk
,”
ASME J. Heat Transfer
,
127
, pp.
1406
1409
.10.1115/1.2098860
4.
Anwar Hossain
,
Md.
,
Hossain
,
A.
, and
Wilson
,
M.
,
2001
, “
Unsteady Flow of Viscous Incompressible Fluid With Temperature-Dependent Viscosity Due to a Rotating Disc in Presence of Transverse Magnetic Field and Heat Transfer
,”
Int. J. Therm. Sci.
,
40
, pp.
11
20
.10.1016/S1290-0729(00)01183-2
5.
Bar-Yoseph
,
P.
, and
Olek
,
S.
,
1984
, “
Asymptotic and Finite Element Approximations for Heat Transfer in Rotating Compressible Flow Over an Infinite Porous Disk
,”
Comput. Fluids
,
12
, pp.
177
197
.10.1016/0045-7930(84)90003-3
6.
Koong
,
S. S.
, and
Blacksher
,
P. L.
,
1965
, “
Experimental Measurements of Mass Transfer From a Rotating Disk in a Uniform Stream
,”
ASME J. Heat Transfer
,
87
, pp.
422
423
.10.1115/1.3689128
7.
Lee
,
M. H.
,
Jeng
,
D. R.
, and
DeWitt
,
K. J.
,
1978
, “
Laminar Boundary Layer Transfer Over Rotating Bodies in Forced Flow
,”
ASME J. Heat Transfer
,
100
, pp.
496
503
.10.1115/1.3450837
8.
Jeng
,
D. R.
,
DeWitt
,
K. J.
, and
Lee
,
M. H.
,
1979
, “
Forced Convection Over Rotating Bodies With Non-Uniform Surface Temperature
,”
Int. J. Heat Mass Transfer
,
22
, pp.
89
97
.10.1016/0017-9310(79)90101-7
9.
Evans
,
R.
, and
Greif
,
R.
,
1988
, “
Forced Flow Near a Heated Rotating Disk: A Similarity Solution
,”
Numer. Heat Transfer
,
14
, pp.
373
387
.10.1080/10407788808913650
10.
Liu
,
K. T.
, and
Stewart
,
W. E.
,
1972
, “
Asymptotic Solution for Forced Convection From a Rotating Disk
,”
Int. J. Heat Mass Transfer
,
15
, pp.
187
189
.10.1016/0017-9310(72)90181-0
11.
Cochran
,
W. G.
,
1934
, “
The Flow Due to a Rotating Disk
,”
Proc. Cambridge Philos. Soc.
,
30
, pp.
365
375
.10.1017/S0305004100012561
12.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
, I
.
,
2011
, “
Flow and Heat Transfer Over a Rotating Porous Disk in a Nanofluid
,”
Physica B
,
406
, pp.
1767
1772
.10.1016/j.physb.2011.02.024
13.
Turkyilmazoglu
,
M.
, and
Senel
,
P.
,
2013
, “
Heat and Mass Transfer of the Flow Due to a Rotating Rough and Porous Disk
,”
Int. J. Therm. Sci.
,
63
, pp.
146
158
.10.1016/j.ijthermalsci.2012.07.013
14.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Levine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
15.
Kuiken
,
H. K.
,
1971
, “
The Effect of Normal Blowing on the Flow Near a Rotating Disk of Infinite Extent
,”
J. Fluid Mech.
,
47
, pp.
789
798
.10.1017/S002211207100137X
16.
Yen
,
S.-C.
,
Wang
,
J.-S.
, and
Chapman
,
T. W.
,
1992
, “
Experimental Mass Transfer at a Forced-Convective Rotating-Disk Electrode
,”
J. Electrochem. Soc.
,
139
, pp.
2231
2238
.10.1149/1.2221207
17.
Wagner
,
C.
,
1948
, “
Heat Transfer From a Rotating Disk to Ambient Air
,”
J. Appl. Phys.
,
19
, pp.
837
839
.10.1063/1.1698216
You do not currently have access to this content.