The performance of tree-like fins with varying bifurcation angle, surface emissivity, material, width-to-thickness ratio, and base heat rate was examined. Overall system performance was examined computationally. The computational results have been validated, verified, and cast in terms of commonly defined dimensionless parameters. Tree-like fins were found to be more effective and more efficient than the rectangular fins. Fin efficiency and effectiveness were found to increase with increasing bifurcation angles while base temperatures were found to decrease with increasing bifurcation angles. As expected, base temperatures were highest for the largest width-to-thickness ratios and smallest for materials with relatively higher thermal conductivities.

References

References
1.
Schmidt
,
E.
,
1926
, “
Die Warmeubertragung Durch Rippen
,”
Z. Ver. Dtsch. Ing.
,
70
, pp.
885
889
.
2.
Duffin
,
R. J.
,
1962
, “
A Variational Problem Relating to Cooling Fins
,”
J. Math. Mech.
,
8
, pp.
47
56
.
3.
Liu
,
C.
,
1962
, “
A Variational Problem With Applications to Cooling Fins
,”
J. Soc. Ind. Appl. Mech.
,
10
(
1
), pp.
19
29
.10.1137/0110002
4.
Mackay
,
D. B.
, and
Leventhal
,
E. L.
,
1960
, “
Radiant Heat Transfer From a Flat Plate Uniformly Heated Along the Edge
,”
AIChE 4th National Heat Transfer Conference
,
New York
.
5.
Wilkins
,
J. E.
,
1960
, “
Minimum-Mass Thin Fins which Transfer Heat Only by Radiation to Surroundings at Absolute Zero
,”
J. Soc. Ind. Appl. Math.
,
8
(
4
), pp.
630
639
.10.1137/0108047
6.
Bartas
,
J. G.
, and
Sellers
,
W. H.
,
1960
, “
Radiation Fin Effectiveness
,”
ASME J. Heat Transfer
,
82C
, pp.
73
75
.10.1115/1.3679882
7.
Sparrow
,
E. M.
, and
Eckert
,
E. R. G.
,
1962
, “
Radiant Interaction Between Fin and Base Surfaces
,”
ASME J. Heat Transfer
,
84
(
1
), pp.
12
18
.10.1115/1.3684281
8.
Callinan
,
J. P.
, and
Berggren
,
W. P.
,
1959
, “
Some Radiator Design Criteria for Space Vehicles
,”
ASME J. Heat Transfer
,
81C
, pp.
237
238
.
9.
Aziz
,
A.
, and
Kraus
,
A. D.
,
1996
, “
Optimum Design of Radiating and Convecting-Radiating Fins
,”
Heat Transfer Eng.
,
17
(
3
), pp.
44
78
.10.1080/01457639608939880
10.
Naumann
,
R. J.
,
2004
, “
Optimizing the Design of Space Radiators
,”
Int. J. Thermophys.
,
25
(
6
), pp.
1929
1941
.10.1007/s10765-004-7747-0
11.
Schnurr
,
N. M.
,
Shapiro
,
A. B.
, and
Townsend
,
M. A.
,
1976
, “
Optimization of Radiating Fin Arrays With Respect to Weight
,”
ASME J. Heat Transfer
,
98
(
4
), pp.
643
648
.10.1115/1.3450613
12.
Krikkis
,
R. N.
, and
Razelos
,
P.
,
2002
, “
Optimum Design of Spacecraft Radiators With Longitudinal Rectangular and Triangular Fins
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
805
812
.10.1115/1.1497359
13.
Kumar
,
S. S.
,
Nayak
,
N.
, and
Venkateshan
,
S. P.
,
1993
, “
Optimum Finned Space Radiators
,”
Int. J. Heat Fluid Flow
,
14
(
2
), pp.
191
200
.10.1016/0142-727X(93)90028-L
14.
Khor
,
Y. K.
,
Hung
,
Y. M.
, and
Lim
,
B. K.
,
2010
, “
On the Role of Radiation View Factor in Thermal Performance of Straight-Fin Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1087
1095
.10.1016/j.icheatmasstransfer.2010.06.012
15.
Shabany
,
Y.
,
2008
, “
Radiation Heat Transfer From Plate-Fin Heat Sinks
,”
Semiconductor Thermal Measurement and Management Symposium
, pp.
132
136
.
16.
Ellison
,
G. N.
,
1979
, “
Generalized Computations of the Gray Body Shape Factor for Thermal Radiation From a Rectangular U-Channel
,”
IEEE Trans. Compon., Hybrids Manuf. Technol.
,
2
(
4
), pp.
517
522
.10.1109/TCHMT.1979.1135492
17.
Razelos
,
P.
, and
Krikkis
,
R. N.
,
2001
, “
Optimum Design of Longitudinal Rectangular Fins With Base-to-Fin Radiant Interaction
,”
Heat Transfer Eng.
,
22
(
4
), pp.
3
17
.10.1080/014576301750215760
18.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Minimum Mass Longitudinal Fins With Radiation Interaction at the Base
,”
J. Franklin Inst.
,
328
(
1
), pp.
143
161
.10.1016/0016-0032(91)90011-Q
19.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Optimization of Radiating Fin Array Including Mutual Irradiation Between Radiator Elements
,”
ASME J. Heat Transfer
,
133
(
4
), pp.
814
822
.10.1115/1.2911208
20.
Krishnaprakas
,
C. K.
, and
Narayana
,
K. B.
,
2003
, “
Heat Transfer Analysis of Mutually Irradiating Fins
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
761
769
.10.1016/S0017-9310(02)00356-3
21.
Thompson
,
D'A. W.
,
1942
,
On Growth and Form
,
Cambridge University Press
,
Cambridge, UK
.
22.
Mandelbrot
,
B. B.
,
1982
,
The Fractal Geometry of Nature
,
Freeman
,
New York
.
23.
Barnsley
,
M.
,
1988
,
Fractals Everywhere
,
Academic Press
,
San Diego
.
24.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work. I. The Vascular System and the Cost of Blood Volume
,”
J. Physiol.
,
12
(
3
), pp.
207
214
.
25.
Cohn
,
D. L.
,
1954
, “
Optimal Systems: The Vascular System
,”
Bull. Math. Biophys.
,
16
, pp.
59
74
.10.1007/BF02481813
26.
Calamas
,
D.
, and
Baker
,
J.
,
2013
, “
Performance of a Biologically-Inspired Heat Exchanger With Hierarchical Bifurcating Flow Passages
,”
J. Thermophys. Heat Transfer
,
27
(
1
), pp.
80
90
.10.2514/1.T3950
27.
Van Der Vyver
,
H.
,
2003
, “
Validation of a CFD Model of a Three-Dimensional Tube-In-Tube Heat Exchanger
,” Proceedings of Third International Conference on CFD in the Minerals and Process Industries,
CSIRO, Melbourne, Australia
, pp.
235
240
.
28.
Meyer
,
J.
, and
Van Der Vyver
,
H.
,
2005
, “
Heat Transfer Characteristics of a Quadratic Koch Island Fractal Heat Exchanger
,”
Heat Transfer Eng.
,
26
(
9
), pp.
22
29
.10.1080/01457630500205638
29.
Lee
,
D. J.
, and
Lin
,
W. W.
,
1995
, “
Second Law Analysis on Fractal-Like Fin Under Cross Flow
,”
AIChe J.
,
41
(
10
), pp.
2314
2317
.10.1002/aic.690411015
30.
Xu
,
P.
,
Yu
,
B.
,
Yun
,
M.
, and
Zou
,
M.
,
2006
, “
Heat Conduction in Fractal Tree-Like Branched Networks
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3746
3751
.10.1016/j.ijheatmasstransfer.2006.01.033
31.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
32.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
33.
Bejan
,
A.
, and
Lorente
,
S.
,
2010
, “
The Constructal Law of Design and Evolution in Nature
,”
Philos. Trans. R. Soc. London, Ser. B
,
365
(
1545
), pp.
1335
1347
.10.1098/rstb.2009.0302
34.
Bejan
,
A.
, and
Lorente
,
S.
,
2006
, “
Constructal Theory of Generation of Configuration in Nature and Engineering
,”
J. Appl. Phys.
,
100(4)
, p.
041301
.10.1063/1.2221896
35.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3105
3118
.10.1016/S0017-9310(99)00353-1
36.
Bejan
,
A.
, and
Dan
,
N.
,
1999
, “
Two Constructal Routes to Minimal Heat Flow Resistance via Greater Internal Complexity
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
6
14
.10.1115/1.2825968
37.
Bejan
,
A.
,
Lorente
,
S.
, and
Lee
,
J.
,
2008
, “
Unifying Constructal Theory of Tree Roots, Canopies and Forests
,”
J. Theor. Biol.
,
254
(
3
), pp.
529
540
.10.1016/j.jtbi.2008.06.026
38.
Rocha
,
L. A. O.
,
Lorenzini
,
E.
, and
Biserni
,
C.
,
2005
, “
Geometric Optimization of Shapes on the Basis of Bejan's Constructal Theory
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1281
1288
.10.1016/j.icheatmasstransfer.2005.07.010
39.
Bejan
,
A.
,
2002
, “
Dendritic Constructal Heat Exchanger With Small-Scale Crossflows and Larger-Scales Counterflows
,”
Int. J. Heat Mass Transfer
,
45
(
23
), pp.
4607
4620
.10.1016/S0017-9310(02)00165-5
40.
da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Constructal Multi-Scale Tree-Shaped Heat Exchangers
,”
J. Appl. Phys.
,
96
(
3
), pp.
1709
1718
.10.1063/1.1766089
41.
Zimparov
,
V. D.
,
da Silva
,
A. K.
, and
Bejan
,
A.
,
2006
, “
Constructal Tree-Shaped Parallel Flow Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4558
4566
.10.1016/j.ijheatmasstransfer.2006.04.035
42.
Alebrahim
,
A.
, and
Bejan
,
A.
,
1999
, “
Constructal Trees of Circular Fins for Conductive and Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3585
3597
.10.1016/S0017-9310(99)00021-6
43.
Bejan
,
A.
,
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2101
2115
.10.1016/S0017-9310(99)00283-5
44.
Almogbel
,
M.
, and
Bejan
,
A.
,
2000
, “
Cylindrical Trees of Pin Fins
,”
Int. J. Heat Mass Transfer
,
43
, pp.
4285
4297
.10.1016/S0017-9310(00)00049-1
45.
Almogbel
,
A.
,
Bejan
,
A.
,
2001
, “
Constructal Optimization of Nonuniformly Distributed Tree-Shaped Flow Structures for Conduction
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4185
4195
.10.1016/S0017-9310(01)00080-1
46.
Kuddusi
,
L.
, and
Egrican
,
N.
,
2008
, “
A Critical Review of Constructal Theory
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1283
1294
.10.1016/j.enconman.2007.05.023
47.
Ghodoossi
,
L.
,
2004
, “
Conceptual Study on Constructal Theory
,”
Energy Convers. Manage.
,
45
(
9-10
), pp.
1379
1395
.10.1016/j.enconman.2003.09.002
48.
Plawsky
,
J. L.
,
1993
, “
Transport in Branched Systems I: Steady-State Response
,”
Chem. Eng. Commun.
,
123
, pp.
71
86
.10.1080/00986449308936166
49.
Plawsky
,
J. L.
,
1993
, “
Transport in Branched Systems II: Transient Response
,”
Chem. Eng. Commun.
,
123
, pp.
87
109
.10.1080/00986449308936167
50.
Glowinski
,
R.
and
Le Tallec
,
P.
,
1989
, “
Augmented Lagrangian Methods and Operator-Splitting Methods in Nonlinear Mechanics
,” SIAM, Philadelphia.
51.
Marchuk
,
G. I.
,
1982
,
Methods of Numerical Mathematics
,
Springer-Verlag
,
Berlin
.
52.
Samarskii
,
A. A.
,
1989
,
Theory of Difference Schemes
,
Nauka
,
Moscow
.
53.
Kern
,
D. Q.
, and
Kraus
,
A. D.
,
1972
,
Extended Surface Heat Transfer
,
McGraw-Hill
,
New York
, pp.
203
211
.
54.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
1992
,
Introduction to Fluid Mechanics
,
4th ed.
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.