This paper proposes and implements a new methodology for optimizing finned-tube heat exchangers (FTHEs) using a volume-averaging theory (VAT) hierarchical physical model and a genetic algorithm (GA) numerical optimizer. This method allows for multiple-parameter constrained optimization of FTHEs by design of their basic morphological structures. A consistent model is used to describe transport phenomena in a FTHE based on VAT, which allows for the volume-averaged conservation of mass, momentum, and energy equations to be solved point by point, with the morphology of the structure directly incorporated into the field equations and full conjugate effects included. The equations differ from those often presented in porous media modeling and are developed using a rigorous averaging technique, hierarchical modeling methodology, and fully turbulent models with Reynolds stresses and fluxes in every pore space. These averaged equations have additional integral and differential terms that must be dealt with in order for the equation set to be closed, and recent work has provided this closure for FTHEs. The resulting governing equation set is relatively simple and is discretized and quickly solved numerically. Such a computational solution algorithm is fast running, but still able to present a detailed picture of the temperature fields in both of the fluid flows as well as in the solid structure of the heat exchanger. A GA is integrated with the VAT-based solver to carry out the FTHE numerical optimization, which is a ten parameter problem, and the FTHE is optimized subject to imposed constraints. This method of using the VAT-based solver fully integrated with a GA optimizer results in a new all-in-one tool for performing multiple-parameter constrained optimization on FTHEs.

References

References
1.
Ozkol
,
I.
, and
Komurgoz
,
G.
,
2005
, “
Determination of the Optimum Geometry of the Heat Exchanger Body Via a Genetic Algorithm
,”
Numer. Heat Transfer, Part A
,
48
(
3
), pp.
283
296
.10.1080/10407780590948891
2.
Xie
,
G.
,
Wang
,
Q.
, and
Sunden
,
B.
,
2008
, “
Application of a Genetic Algorithm for Thermal Design of Fin-and-Tube Heat Exchangers
,”
Heat Transfer Eng.
,
29
(
7
), pp.
597
607
.10.1080/01457630801922337
3.
Domanski
,
P. A.
,
1989
, “
EVSIM: An Evaporator Simulation Model Accounting for Refrigerant and One Dimensional Air Distribution
,” Department of Energy Report No. NISTIR 89-4133, p.
142
.
4.
NIST
,
2003
,
EVAP-COND-Simulation Models for Finned-Tube Heat Exchangers
,
NIST
,
Gaithersburg, MD
.
5.
Domanski
,
P. A.
, and
Yashar
,
D.
,
2007
, “
Optimization of Finned-Tube Condensers Using an Intelligent System
,”
Int. J. Refrig.
,
30
(
3
), pp.
482
488
.10.1016/j.ijrefrig.2006.08.013
6.
Jiang
,
H.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2006
, “
CoilDesigner: A General-Purpose Simulation and Design Tool for Air-to-Refrigerant Heat Exchangers
,”
Int. J. Refrig.
,
29
(
4
), pp.
601
610
.10.1016/j.ijrefrig.2005.09.019
7.
Abdelaziz
,
O.
,
Aute
,
V.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2010
, “
Approximation-Assisted Optimization for Novel Compact Heat Exchanger Designs
,”
HVAC&R Res.
,
16
(
5
), pp.
707
728
.10.1080/10789669.2010.10390929
8.
Mousavi
,
S. S.
,
Hooman
,
K.
, and
Mousavi
,
S. J.
,
2007
, “
Genetic Algorithm Optimization for Finned Channel Performance
,”
Appl. Math. Mech.
,
28
(
12
), pp.
1597
1604
.10.1007/s10483-007-1206-z
9.
Mousavi
,
S. S.
, and
Hooman
,
K.
,
2006
, “
Heat and Fluid Flow in Entrance Region of a Channel With Staggered Baffles
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2011
2019
.10.1016/j.enconman.2005.12.018
10.
Matos
,
R. S.
,
Laursen
,
T. A.
,
Vargas
,
J. V. C.
, and
Bejan
,
A.
,
2004
, “
Three-Dimensional Optimization of Staggered Finned Circular and Elliptic Tubes in Forced Convection
,”
Int. J. Thermal Sci.
,
43
(
5
), pp.
477
487
.10.1016/j.ijthermalsci.2003.10.003
11.
Fabbri
,
G.
,
2000
, “
Heat Transfer Optimization in Corrugated Wall Channels
,”
Int. J. Heat Mass Transfer
,
43
(
23
), pp.
4299
4310
.10.1016/S0017-9310(00)00054-5
12.
Foli
,
K.
,
Okabe
,
T.
,
Olhofer
,
M.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2006
, “
Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-Objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1090
1099
.10.1016/j.ijheatmasstransfer.2005.08.032
13.
Hilbert
,
R.
,
Janiga
,
G.
,
Baron
,
R.
, and
Thévenin
,
D.
,
2006
, “
Multi-objective Shape Optimization of a Heat Exchanger Using Parallel Genetic Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2567
2577
.10.1016/j.ijheatmasstransfer.2005.12.015
14.
Hooman
,
K.
, and
Gurgenci
,
H.
,
2010
, “
Porous Medium Modeling of Air-Cooled Condensers
,”
Transp. Porous Media
,
84
(
2
), pp.
257
273
.10.1007/s11242-009-9497-8
15.
Catton
,
I.
,
2011
, “
Conjugate Heat Transfer Within a Heterogeneous Hierarchical Structure
,”
ASME J. Heat Transfer
,
133
(
10
), p.
103001
.10.1115/1.4003576
16.
Travkin
,
V. S.
, and
Catton
,
I.
,
2001
, “
Transport Phenomena in Heterogeneous Media Based on Volume Averaging Theory
,”
Advances in Heat Transfer
,
G. G.
Hari
, and
A. H.
Charles
, eds.,
Elsevier
,
New York
, pp.
1
144
.
17.
Whitaker
,
S.
,
1967
, “
Diffusion and Dispersion in Porous Media
,”
AIChE J.
,
13
(
3
), pp.
420
427
.10.1002/aic.690130308
18.
Whitaker
,
S.
,
1986
, “
Flow in Porous Media II: The Governing Equations for Immiscible, Two-Phase Flow
,”
Transp. Porous Media
,
1
(
2
), pp.
105
125
.10.1007/BF00714688
19.
Whitaker
,
S.
,
1986
, “
Flow in Porous Media I: A Theoretical Derivation of Darcy's Law
,”
Transp. Porous Media
,
1
(
1
), pp.
3
25
.10.1007/BF01036523
20.
Shcherban
,
A. N.
,
Primak
,
A. V.
, and
Travkin
,
V. S.
,
1986
, “
Mathematical Models of Flow and Mass Transfer in Urban Roughness Layer
,”
Problemy Kontrolya i Zaschita Atmosfery or Zagryazneniya
,
12
, pp.
3
10
.
21.
Primak
,
A. V.
,
Shcherban
,
A. N.
, and
Travkin
,
V. S.
,
1986
, “
Turbulent Transfer in Urban Agglomerations on the Basis of Experimental Statistical Models of Roughness Layer Morphological Properties
,”
Trans. World Meteorological Org. Conf. on Air Pollution Modelling and its Application, WMO, Geneve, Switzerland
, pp.
259
266
.
22.
Travkin
,
V.
, and
Catton
,
I.
,
1992
,
Models of Turbulent Thermal Diffusivity and Transfer Coefficients for a Regular Packed Bed of Spheres
, Vol.
193
,
ASME
,
New York
, p.
15
.
23.
Travkin
,
V. S.
,
Catton
,
I.
, and
Gratton
,
L.
,
1993
,
Single Phase Turbulent Transport in Prescribed Non-Isotropic and Stochastic Porous Media
, Vol.
240
,
ASME
,
New York
, p.
43
.
24.
Wang
,
C.-C.
,
Chi
,
K.-Y.
, and
Chang
,
C.-J.
,
2000
, “
Heat Transfer and Friction Characteristics of Plain Fin-and-Tube Heat Exchangers—Part II: Correlation
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2693
2700
.10.1016/S0017-9310(99)00333-6
25.
Zhou
,
F.
,
Hansen
,
N. E.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2011
, “
Obtaining Closure for Fin-and-Tube Heat Exchanger Modeling Based on Volume Averaging Theory (VAT)
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111802
.10.1115/1.4004393
26.
Techo
,
R.
,
Tickner
,
R. R.
, and
James
,
R. E.
,
1965
, “
An Accurate Equation for the Computation of the Friction Factor for Smooth Pipes for the Reynolds Number
,”
ASME J. Appl. Mech.
,
32
, p.
443
.10.1115/1.3625826
27.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.10.1002/aic.690180219
28.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
29.
Chen
,
S. S.
, and
Jendrzejcyk
,
J. A.
,
1981
, “
Experiments on Fluid Elastic Instability in Tube Banks Subjected to Liquid Cross Flow
,”
J. Sound Vib.
,
78
(
3
), pp.
355
381
.10.1016/S0022-460X(81)80145-9
30.
Weaver
,
D. S.
, and
Grover
,
L. K.
,
1978
, “
Cross-Flow Induced Vibrations in a Tube Bank—Turbulent Buffeting and Fluid Elastic Instability
,”
J. Sound Vib.
,
59
(
2
), pp.
277
294
.10.1016/0022-460X(78)90506-0
31.
Domanski
,
P. A.
,
Yashar
,
D.
,
Lee
,
S.
, and
Wojtusiak
,
J.
,
2011
, “
Practical Aspects of Applying Evolutionary Algorithms for Optimizing Refrigerant Circuitry in Heat Exchangers
,”
23rd IIR International Congress of Refrigeration, Prague
, p.
8
.
32.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.