A well-known set of Berkovsky–Polevikov (BP) correlations have been extremely useful in predicting the wall-averaged Nusselt number of “wide” enclosures heated from the side and filled with a fluid undergoing natural convection. A generic form of these correlations, dependent on only two coefficients, is now proposed for predicting the Nusselt number of a heterogeneous (fluid–solid), porous enclosure, i.e., an enclosure filled not only with a fluid but also with uniformly distributed, disconnected and conducting, homogeneous solid particles. The final correlations, and their overall accuracies, are determined by curve fitting the numerical simulation results of the natural convection process inside the heterogeneous enclosure. Results for several Ra and Pr, and for 1, 4, 9, 16, and 36 solid particles, with the fluid volume-fraction (porosity) maintained constant, indicate the accuracy of these correlations to be detrimentally affected by the interference phenomenon caused by the solid particles onto the vertical boundary layers that develop along the hot and cold walls of the enclosure; the resulting correlations, in this case, present standard deviation varying between 6.5% and 19.7%. An analytical tool is then developed for predicting the interference phenomenon, using geometric parameters and scale analysis results. When used to identify and isolate the interference phenomenon, this tool is shown to yield correlations with much improved accuracies between 2.8% and 9.2%.

References

References
1.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
,
4th ed.
,
Springer-Verlag
,
New York
.
2.
Vafai
,
K.
, ed.,
2000
,
Handbook of Porous Media
,
Mercel Dekker
,
New York
.
3.
Bejan
,
A.
, and
Kraus
,
A. D.
, ed.,
2003
,
Heat Transfer Handbook
,
Wiley
,
New York
.
4.
Whitaker
,
S.
,
1998
,
Theory and Applications of Transport in Porous Media: The Method of Volume Averaging
,
Kluwer Academic Publishers
,
Norwell
.
5.
Merrikh
,
A. A.
, and
Mohamad
,
A. A.
,
2001
, “
Blockage Effects in Natural Convection in Differentially Heated Enclosure
,”
J. Enhanced Heat Transfer
,
8
, pp.
55
74
.
6.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2004
, “
Effect of Distributing a Fixed Amount of Solid Constituent Inside a Porous Medium Enclosure on the Heat Transfer Process
,”
Proceedings of International Conference on Applications of Porous Media, ICAPM 2004
,
A. H.
Reis
and
A. F.
Miguel
, eds.,
CGE-UE, University of Évora
,
Portugal
, pp.
51
57
.
7.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2005
, “
Natural Convection in an Enclosure With Disconnected and Conducting Solid Blocks
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1361
1372
.10.1016/j.ijheatmasstransfer.2004.09.043
8.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
,
2005
, “
Laminar Natural Convection in Cavities Filled With Circular and Square Rods
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
1289
1297
.10.1016/j.icheatmasstransfer.2005.07.014
9.
Zhao
,
F. Y.
,
Tang
,
G. F.
, and
Liu
,
D.
,
2006
, “
Conjugate Natural Convection in Enclosures With External and Internal Heat Sources
,”
Int. J. Eng. Sci.
,
44
, pp.
148
165
.10.1016/j.ijengsci.2005.10.006
10.
Jamalud-Din
,
S.-D.
,
Rees
,
D. A. S.
,
Reddy
,
B. V. K.
, and
Narasimhan
,
A.
,
2010
, “
Prediction of Natural Convection Flow Using Network Model and Numerical Simulations Inside Enclosure With Distributed Solid Blocks
,”
Heat Mass Transfer
,
46
, pp.
333
343
.10.1007/s00231-009-0567-9
11.
Massarotti
,
N.
,
Nithiarasu
,
P.
, and
Carotenuto
,
A.
,
2003
, “
Microscopic and Macroscopic Approach for Natural Convection in Enclosures Filled With Fluid Saturated Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
, pp.
862
886
.10.1108/09615530310502073
12.
Pourshaghaghy
,
A.
,
Hakkaki-Fard
,
A.
, and
Mahdavi-Nejad
,
A.
,
2007
, “
Direct Simulation of Natural Convection in Square Porous Enclosure
,”
Energy Conver. Manage.
,
48
, pp.
1579
1589
.10.1016/j.enconman.2006.11.013
13.
Revnic
,
C.
,
Grosan
,
T.
,
Pop
,
I.
, and
Ingham
,
D. B.
,
2009
, “
Free Convection in a Square Cavity Filled With a Bidisperse Porous Medium
,”
Int. J. Therm. Sci.
,
48
, pp.
1876
1883
.10.1016/j.ijthermalsci.2009.02.016
14.
Narasimhan
,
A.
, and
Reddy
,
B. V. K.
,
2010
, “
Natural Convection Inside a Bidisperse Porous Medium Enclosure
,”
ASME J. Heat Transfer
,
132
,
012502
.10.1115/1.3192134
15.
Narasimhan
,
A.
, and
Reddy
,
B. V. K.
,
2011
, “
Resonance of Natural Convection Inside a Bidisperse Porous Medium Enclosure
,”
ASME J. Heat Transfer
,
133
, p.
042601
.10.1115/1.4001316
16.
Narasimhan
,
A.
, and
Reddy
,
B. V. K.
,
2011
, “
Laminar Forced Convection in a Heat Generating Bi-Disperse Porous Medium Channel
,”
Int. J. Heat Mass Transfer
,
54
, pp.
636
644
.10.1016/j.ijheatmasstransfer.2010.08.022
17.
House
J. M.
,
Beckermann
C.
, and
Smith
,
T. F.
,
1990
, “
Effect of a Centered Conducting Body on Natural Convection Heat Transfer in an Enclosure
,”
Numer. Heat Transfer, Part A
,
18
, pp.
213
226
.10.1080/10407789008944791
18.
Oh
,
J. Y.
,
Ha
,
M. Y.
, and
Kim
,
K. C.
,
1997
, “
Numerical Study of Heat Transfer and Flow of Natural Convection in an Enclosure With a Heat-Generating Conducting Body
,”
Numer. Heat Transfer, Part A
,
31
, pp.
289
303
.10.1080/10407789708914038
19.
Lee
,
J. R.
, and
Ha
,
M. Y.
,
2005
, “
A Numerical Study of Natural Convection in a Horizontal Enclosure With a Conducting Body
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3308
3318
.10.1016/j.ijheatmasstransfer.2005.02.026
20.
Lee
,
J. R.
, and
Ha
,
M. Y.
,
2006
, “
Numerical Simulation of Natural Convection in a Horizontal Enclosure With a Heat-generating Conducting Body
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2684
2702
.10.1016/j.ijheatmasstransfer.2006.01.010
21.
Bhave
,
P.
,
Narasimhan
,
A.
, and
Rees
,
D. A. S.
,
2006
, “
Natural Convection Heat Transfer Enhancement Using Adiabatic Block: Optimal Block Size and Prandtl Number Effect
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3807
3818
.10.1016/j.ijheatmasstransfer.2006.04.017
22.
Kumar De
,
A.
, and
Dalal
,
A.
,
2006
, “
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4608
4623
.10.1016/j.ijheatmasstransfer.2006.04.020
23.
Zhao
,
F. Y.
,
Liu
,
D.
, and
Tang
,
G. F.
,
2007
, “
Application Issues of the Streamline, Heatline and Massline for Conjugate Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
50
, pp.
320
334
.10.1016/j.ijheatmasstransfer.2006.06.026
24.
Merrikh
,
A. A.
,
Lage
,
J. L.
, and
Mohamad
,
A. A.
,
2002
, “
Comparison Between Pore-Level and Porous Medium Models for Natural Convection in a Nonhomogeneous Enclosure
,”
AMS Contemp. Math.
,
295
, pp.
387
396
.10.1090/conm/295
25.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2005
, “
From Continuum to Porous-Continuum: The Visual Resolution Impact on Modeling Natural Convection in Heterogeneous Media
,”
Transport Phenomena in Porous Media—Vol. 3
,
D. B.
Ingham
and
I.
Pop
, eds.,
Elsevier
,
Oxford
, pp.
60
96
.
26.
Merrikh
,
A. A.
,
Lage
,
J. L.
, and
Mohamad
,
A. A.
,
2005
, “
Natural Convection in Non-Homogeneous Heat-Generating Media: Comparison of Continuum and Porous-Continuum Models
,”
J. Porous Media
,
8
, pp.
1
15
.10.1615/JPorMedia.v8.i2.40
27.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
,
2005
, “
Heat Transfer in Enclosures Having a Fixed Amount of Solid Material Simulated With Heterogeneous and Homogeneous Models
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4748
4765
.10.1016/j.ijheatmasstransfer.2005.05.016
28.
Hooman
,
K.
, and
Merrikh
,
A. A.
,
2010
, “
Theoretical Analysis of Natural Convection in an Enclosure Filled With Disconnected Conducting Square Solid Blocks
,”
Transp. Porous Media
,
85
, pp.
641
651
.10.1007/s11242-010-9583-y
29.
Berkovsky
,
B. M.
, and
Polevikov
,
V. K.
,
1977
, “
Numerical Study of Problems on High-Intensive Free Convection
,”
Heat Transfer and Turbulent Buoyant Convection: Studies and Applications for Natural Environment, Buildings, Engineering Systems
,
Hemisphere Publishing
,
Washington, DC
, pp.
443
455
.
30.
Bejan
,
A.
,
1993
,
Heat Transfer
,
John Wiley & Sons, Inc.
, New York, p.
369
.
31.
Çengel
,
Y. A.
,
2002
,
Heat Transfer: A Practical Approach
,
McGraw Hill
, p.
480
.
32.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
7th ed.
,
New York
, p.
623
.
33.
Çengel
,
Y. A.
,
Cimbala
,
J. M.
, and
Turner
,
R. H.
,
2012
,
Fundamentals of Thermal-Fluid Sciences
,
4th ed.
,
McGraw-Hill
,
New York
, p.
849
.
34.
Bejan
,
A.
, and
Lage
,
J. L.
,
1990
, “
The Prandtl Number Effect on the Transition in Natural Convection Along a Vertical Surface
,”
ASME J. Heat Transfer
,
112
, pp.
787
790
.10.1115/1.2910457
35.
De
Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
, pp.
249
264
.10.1002/fld.1650030305
36.
Hortmann
,
M.
,
Peric
,
M.
, and
Scheuerer
G.
,
1990
, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Benchmark Solutions
,”
Int. J. Numer. Methods Fluids
,
11
, pp.
189
207
.10.1002/fld.1650110206
37.
Kalita
,
J. C.
,
Dalal
,
D. C.
, and
Dass
,
A. K.
,
2001
, “
Fully Compact Higher Order Computation of Steady-State Natural Convection in a Square Cavity
,”
Phys. Rev. E
,
64
, p.
066703
.10.1103/PhysRevE.64.066703
38.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
John Wiley & Sons, Inc.
,
3rd ed.
, New York, p.
118
.
You do not currently have access to this content.