Laminar to weakly turbulent mixed convection in a square duct heated from the bottom side is highly strengthened by ionic jets generated by an array of high voltage points, opposite to the heated strip. Negative ion injection is activated within the dielectric liquid HFE-7100. Local temperatures on the heated wall are measured by liquid crystal thermography. Distributions of the Nusselt number are obtained at different forced flow rates, applied heat flows, and transiting electrical currents. In correspondence of the point emitters, higher Nusselt numbers in the impingement areas are measured and an analogy with the thermo-fluid dynamic behavior of an array of submerged impinging jets in a crossflow is drawn. The diameter of the ionic jets is evaluated and an electrohydrodynamic Reynolds number is employed for correlation and similarity purposes. Potential applications of the technique are high-efficiency compact heat exchangers and heat sinks.

References

1.
Metais
,
B.
, and
Eckert
,
E. R. G.
,
1964
, “
Forced, Mixed, and Free Convection Regimes
,”
ASME J. Heat Transfer
,
86
, pp.
295
296
.10.1115/1.3687128
2.
Grassi
,
W.
, and
Testi
,
D.
,
2006
, “
Heat Transfer Correlations for Turbulent Mixed Convection in the Entrance Region of a Uniformly Heated Horizontal Tube
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1103
1107
.10.1115/1.2345436
3.
Testi
,
D.
,
2013
, “
A Novel Correlation for Azimuthal and Longitudinal Distributions of Heat Transfer Coefficients in Developing Horizontal Pipe Flow Under Transitional Mixed Convection
,”
Int. J. Heat Mass Transfer
,
60
, pp.
221
229
.10.1016/j.ijheatmasstransfer.2013.01.003
4.
Ohadi
,
M. M.
,
Darabi
,
J.
, and
Roget
,
B.
,
2000
, “
Electrode Design, Fabrication, and Material Science for EHD-Enhanced Heat and Mass Transport
,”
Annu. Rev. Heat Transfer
,
11
, pp.
563
632
.10.1615/AnnualRevHeatTransfer.v11.110
5.
Grassi
,
W.
, and
Testi
,
D.
,
2006
, “
Heat Transfer Enhancement by Electric Fields in Several Heat Exchange Regimes
,”
Ann. N. Y. Acad. Sci.
,
1077
, pp.
527
569
.10.1196/annals.1362.062
6.
Grassi
,
W.
,
Testi
,
D.
, and
Della Vista
,
D.
,
2007
, “
Optimal Working Fluid and Electrode Configuration for EHD-Enhanced Single-Phase Heat Transfer
,”
J. Enhanced Heat Transfer
,
14
(
2
), pp.
161
173
.10.1615/JEnhHeatTransf.v14.i2.60
7.
Testi
,
D.
,
2006
, “
Single-Phase Thermo-Fluid Dynamics Under Electric Fields: Phenomenology and Technological Potential
,” Ph.D. thesis, Electrical and Thermal Energetics, University of Pisa, Pisa, Italy.
8.
Spring
,
S.
,
Xing
,
Y.
, and
Weigand
,
B.
,
2012
, “
An Experimental and Numerical Study of Heat Transfer From Arrays of Impinging Jets With Surface Ribs
,”
ASME J. Heat Transfer
,
134
, p.
082201
.10.1115/1.4006155
9.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Rotation on Heat Transfer for a Single Row Jet Impingement Array With Crossflow
,”
ASME J. Heat Transfer
,
134
, p.
082202
.10.1115/1.4006167
10.
Ivanova
,
E. M.
,
Noll
,
B. E.
, and
Aigner
,
M.
,
2013
, “
A Numerical Study on the Turbulent Schmidt Numbers in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
135
, p.
011505
.10.1115/1.4007374
11.
Lacarelle
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
021503
.10.1115/1.4004373
12.
Huber
,
A. M.
,
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
13.
Gao
,
X.
, and
Sundén
,
B.
,
2003
, “
Experimental Investigation of the Heat Transfer Characteristics of Confined Impinging Slot Jets
,”
Exp. Heat Transfer
,
16
, pp.
1
18
.
14.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Shih
,
T. I.-P.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
,”
ASME J. Heat Transfer
,
134
, p.
081902
.10.1115/1.4006166
15.
Kim
,
S.
,
Choi
,
E. Y.
, and
Kwak
,
J. S.
,
2012
, “
Effect of Channel Orientation on the Heat Transfer Coefficient in the Smooth and Dimpled Rotating Rectangular Channels
,”
ASME J. Heat Transfer
,
134
, p.
064504
.10.1115/1.4006013
16.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Thermal Sci. Eng. Appl.
,
4
, p.
011002
.10.1115/1.4005604
17.
Grassi
,
W.
,
Testi
,
D.
, and
Saputelli
,
M.
,
2005
, “
EHD Enhanced Heat Transfer in a Vertical Annulus
,”
Int. Commun. Heat Mass Transfer
,
32
(
6
), pp.
748
757
.10.1016/j.icheatmasstransfer.2004.10.011
18.
Grassi
,
W.
, and
Testi
,
D.
,
2006
, “
Heat Transfer Augmentation by Ion Injection in an Annular Duct
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
283
289
.10.1115/1.2150838
19.
Testi
,
D.
,
2007
, “
Ion Injection as an Effective Technique of Heat Transfer Enhancement in Space
,”
AIAA J. Thermophys. Heat Transfer
,
21
(
2
), pp.
431
436
.10.2514/1.24977
20.
Schanda
,
J.
,
2007
,
Colorimetry: Understanding the CIE System
,
John Wiley & Sons
,
Hoboken, NJ
.
21.
Grassi
,
W.
,
Testi
,
D.
,
Della Vista
,
D.
, and
Torelli
,
G.
,
2007
, “
Calibration of a Sheet of Thermosensitive Liquid Crystals Viewed Non-Orthogonally
,”
Measurement
,
40
(
9–10
), pp.
898
903
.10.1016/j.measurement.2006.10.020
22.
Grassi
,
W.
, and
Testi
,
D.
,
2011
, “
Quantitative Measurements in Thermo-Fluid Dynamics Based on Colour Processing
,”
Opt. Laser Technol.
,
43
(
2
), pp.
381
393
.10.1016/j.optlastec.2009.09.007
23.
Bagnoli
,
T.
,
2006
, “
Application of a Thermographic Technique to the Study of Heat Transfer in a Square Duct in the Presence of EHD Phenomena
,”
Graduate thesis, Aerospace Engineering, University of Pisa
,
Pisa, Italy
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
25.
Grassi
,
W.
, and
Testi
,
D.
,
2009
, “
Electrohydrodynamic Convective Heat Transfer in a Square Duct
,”
Ann. N. Y. Acad. Sci.
,
1161
, pp.
452
462
.10.1111/j.1749-6632.2008.04330.x
26.
Geers
,
L. F. G.
,
2003
, “
Multiple Impinging Jet Arrays: An Experimental Study on Flow and Heat Transfer
,” Ph.D. thesis,
Thermal and Fluids Sciences, Delft University of Technology
,
Delft, The Netherlands
.
27.
Findlay
,
M. J.
,
1998
,
Experimental and Computational Investigation of Inclined Jets in a Crossflow
, Ph.D. thesis,
Mechanical Engineering, University of British Columbia
,
Vancouver, Canada
.
28.
Al-aqal
,
O. M. A.
,
2003
, “
Heat Transfer Distributions on the Walls of a Narrow Channel With Jet Impingement and Cross Flow
,” Ph.D. thesis,
Mechanical Engineering, University of Pittsburgh
, Pittsburgh, PA.
29.
Dano
,
B. P. E.
,
Liburdy
,
J. A.
, and
Kanokjaruvijit
,
K.
,
2005
, “
Flow Characteristics and Heat Transfer Performances of a Semi-Confined Impinging Array of Jets: Effect of Nozzle Geometry
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
691
701
.10.1016/j.ijheatmasstransfer.2004.07.046
30.
Kanokjaruvijit
,
K.
,
Martinez-Botas
,
R. F.
,
2005
, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
161
170
.10.1016/j.ijheatmasstransfer.2004.08.005
31.
Grassi
,
W.
,
Testi
,
D.
, and
Della Vista
,
D.
,
2006
, “
Heat Transfer Enhancement on the Upper Surface of a Horizontal Heated Plate in a Pool by Ion Injection From a Metallic Point
,”
J. Electrost.
,
64
(
7–9
), pp.
574
580
.10.1016/j.elstat.2005.10.025
32.
Crowley
,
J. M.
,
Wright
,
G. S.
, and
Chato
,
J. C.
,
1990
, “
Selecting a Working Fluid to Increase the Efficiency and Flow Rate of an EHD Pump
,”
IEEE Trans. Ind. Appl.
,
26
(
1
), pp.
42
49
.10.1109/28.52672
33.
Webb
,
B. W.
, and
Ma
,
C.-F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.10.1016/S0065-2717(08)70296-X
34.
Kataoka
,
K.
,
1990
, “
Impingement Heat Transfer Augmentation Due to Large Scale Eddies
,”
Proceedings of 9th International Heat Transfer Conference
, pp.
255
273
.
35.
Barata
,
J. M. M.
,
1996
, “
Fountain Flows Produced by Multiple Impinging Jets in a Crossflow
,”
AIAA J.
,
34
(
12
), pp.
2523
2530
.10.2514/3.13434
36.
Pan
,
Y.
,
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 2—Local Heat Transfer
,”
ASME J. Heat Transfer
,
114
, pp.
880
886
.10.1115/1.2911896
You do not currently have access to this content.