Thermoacoustic waves in near-critical supercritical carbon dioxide are investigated experimentally on acoustic time scales using a fast electrical heating system along with high speed pressure measurements. Supercritical carbon dioxide (near the critical or the pseudocritical states) in an enclosure is subjected to fast boundary heating with a thin nickel foil and an R-C circuit. The combination of very high thermal compressibilities and vanishingly small thermal diffusivities of the near-critical fluid affect the thermal energy propagation, leading to the formation of acoustic waves as carriers of thermal energy (the so called piston effect). The experimental results show that under the same temperature perturbation at the boundary, the strength of the acoustic field is enhanced as the initial state of the supercritical fluid approaches criticality. The heating rate, at which the boundary temperature is raised, is a key factor in the generation of these acoustic waves. The effect of different rates of boundary heating on the acoustic wave formation mechanism near the critical point is studied. The thermoacoustic wave generation and propagation in near-critical supercritical fluid is also investigated numerically and compared with the experimental measurements. The numerical predictions show a good agreement with the experimental data.

References

References
1.
Rayleigh
,
L.
,
1899
, “
On the Conduction of Heat in a Spherical Mass of Air Confined by Walls at a Constant Temperature
,”
Philos. Mag.
,
XLVII
, pp.
314
325
.
2.
Shen
,
B.
, and
Zhang
,
P.
,
2010
, “
On the Transition From Thermoacoustic Convection to Diffusion in a Near-Critical Fluid
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4832
4843
.10.1016/j.ijheatmasstransfer.2010.06.009
3.
Ozoe
,
H.
,
Sato
,
N.
, and
Churchill
,
S. W.
,
1980
, “
The Effect of Various Parameters on Thermoacoustic Convection
,”
Chem. Eng. Commun.
,
5
(
1
), pp.
203
221
.10.1080/00986448008935964
4.
Brown
,
M. A.
, and
Churchill
,
S. W.
,
1995
, “
Experimental Measurements of Pressure Waves Generated by Impulsive Heating of a Surface
,”
AIChE J.
,
41
(
2
), pp.
205
213
.10.1002/aic.690410202
5.
Brown
,
A. M.
, and
Churchill
,
W. S.
,
1999
,
Finite-Difference Computation of the Wave Motion Generated in a Gas by a Rapid Increase in the Bounding Temperature
, Elsevier, New York.
6.
Huang
,
Y.
, and
Bau
,
H. H.
,
1997
, “
Thermoacoustic Waves in a Confined Medium
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
407
419
.10.1016/0017-9310(96)00068-3
7.
Farouk
,
B.
,
Oran
,
E. S.
, and
Fusegi
,
T.
,
2000
, “
Numerical Study of Thermoacoustic Waves in an Enclosure
,”
Phys. Fluids
,
12
(
5
), pp.
1052
1061
.10.1063/1.870360
8.
Aktas
,
M. K.
, and
Farouk
,
B.
,
2003
, “
Numerical Simulation of Developing Natural Convection in an Enclosure Due to Rapid Heating
,”
Int. J. Heat Mass Transfer
,
46
(
12
), pp.
2253
2261
.10.1016/S0017-9310(02)00522-7
9.
Lin
,
Y.
, and
Farouk
,
B.
,
2008
, “
Experimental and Numerical Studies of Thermally Induced Acoustic Waves in an Enclosure
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
105
114
.10.2514/1.29776
10.
Zappoli
,
B.
,
Beysens
,
D.
,
Guenoun
,
P.
,
Khalil
,
B.
,
Garrabos
,
Y.
, and
Le Neindre
,
B.
,
1991
, “
Anomalies of Heat Transport in Near Critical Fluids Under Weightlessness
,”
Adv. Space Res.
,
11
(
7
), pp.
269
276
.10.1016/0273-1177(91)90295-U
11.
Boukari
,
H.
,
Briggs
,
M. E.
,
Shaumeyer
,
J. N.
, and
Gammon
,
R. W.
,
1990
, “
Critical Speeding Up Observed
,”
Phys. Rev. Lett.
,
65
(
21
), pp.
2654
2657
.10.1103/PhysRevLett.65.2654
12.
Zappoli
,
B.
,
Amiroudine
,
S.
,
Carles
,
P.
, and
Ouazzani
,
J.
,
1996
, “
Thermoacoustic and Buoyancy-Driven Transport in a Square Side-Heated Cavity Filled With a Near-Critical Fluid
,”
J. Fluid Mech.
,
316
, pp.
53
72
.10.1017/S0022112096000444
13.
Boukari
,
H.
,
Shaumeyer
,
J. N.
,
Briggs
,
M. E.
, and
Gammon
,
R. W.
,
1990
, “
Critical Speeding Up in Pure Fluids
,”
Phys. Rev. A
,
41
(
4
), pp.
2260
2263
.10.1103/PhysRevA.41.2260
14.
Onuki
,
A.
,
Hao
,
H.
, and
Ferrell
,
R. A.
,
1990
, “
Fast Adiabatic Equilibration in a Single-Component Fluid Near the Liquid-Vapor Critical Point
,”
Phys. Rev. A
,
41
(
4
), pp.
2256
2259
.10.1103/PhysRevA.41.2256
15.
Onuki
,
A.
, and
Ferrell
,
R. A.
,
1990
, “
Adiabatic Heating Effect Near the Gas-Liquid Critical Point
,”
Physica A
,
164
(
2
), pp.
245
264
.10.1016/0378-4371(90)90198-2
16.
Zappoli
,
B.
,
1992
, “
The Response of a Nearly Supercritical Pure Fluid to a Thermal Disturbance
,”
Phys. Fluids A
,
4
(
5
), pp.
1040
1048
.10.1063/1.858255
17.
Zappoli
,
B.
,
Amiroudine
,
S.
,
Carles
,
P.
, and
Ouazzani
,
J.
,
1995
, “
Inversion of Acoustic Waves Reflection Rules in Near Critical Pure Fluids
,”
Phys. Fluids
,
7
(
9
), pp.
2283
2287
.10.1063/1.868476
18.
Zappoli
,
B.
, and
Carles
,
P.
,
1995
, “
Thermo-Acoustic Nature of the Critical Speeding Up
,”
Eur. J. Mech., B
,
14
(
1
), pp.
41
65
.
19.
Zappoli
,
B.
, and
Charles
,
P.
,
1996
, “
Acoustic Saturation of the Critical Speeding Up
,”
Physica D
,
89
(
3–4
), pp.
381
394
.10.1016/0167-2789(95)00206-5
20.
Carles
,
P.
,
1998
, “
The Effect of Bulk Viscosity on Temperature Relaxation Near the Critical Point
,”
Phys. Fluids
,
10
(
9
), pp.
2164
2176
.10.1063/1.869738
21.
Zappoli
,
B.
, and
Durand-Daubin
,
A.
,
1993
, “
Direct Numerical Modelling of Heat and Mass Transport in a Near Supercritical Fluid
,”
Acta Astron.
,
29
(
10–11
), pp.
847
859
.10.1016/0094-5765(93)90167-U
22.
Hasan
,
N.
, and
Farouk
,
B.
,
2012
, “
Thermoacoustic Transport in Supercritical Fluids at Near-Critical and Near-Pseudo-Critical States
,”
J. Supercrit. Fluids
,
68
, pp.
13
24
.10.1016/j.supflu.2012.04.007
23.
Carles
,
P.
,
2006
, “
Thermoacoustic Waves Near the Liquid-Vapor Critical Point
,”
Phys. Fluids
,
18
(
12
), p.
126102
.10.1063/1.2397577
24.
Shen
,
B.
, and
Zhang
,
P.
,
2011
, “
Thermoacoustic Waves Along the Critical Isochore
,”
Phys. Rev. E
,
83
(
1
), p.
011115
.10.1103/PhysRevE.83.011115
25.
Zhang
,
P.
, and
Shen
,
B.
,
2009
, “
Thermoacoustic Wave Propagation and Reflection Near the Liquid-Gas Critical Point
,”
Phys. Rev. E
,
79
(
6
), p.
060103
.10.1103/PhysRevE.79.060103
26.
Nakano
,
A.
,
Shiraishi
,
M.
, and
Murakami
,
M.
,
2001
, “
Application of Laser Holography Interferometer to Heat Transport Phenomena Near the Critical Point of Nitrogen
,”
Cryogenics
,
41
(
5–6
), pp.
429
435
.10.1016/S0011-2275(01)00085-6
27.
Miura
,
Y.
,
Yoshihara
,
S.
,
Ohnishi
,
M.
,
Honda
,
K.
,
Matsumoto
,
M.
,
Kawai
,
J.
,
Ishikawa
,
M.
,
Kobayashi
,
H.
, and
Onuki
,
A.
,
2006
, “
High-Speed Observation of the Piston Effect Near the Gas-Liquid Critical Point
,”
Phys. Rev. E
,
74
(
1
), p.
010101R
.10.1103/PhysRevE.74.010101
28.
Lemmon
,
E. W.
,
Peskin
,
A. P.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2000
, “NIST Standard Reference Database 12,” National Institute of Standards and Technology (NIST), Ver. 5.0.
29.
Onuki
,
A.
,
1997
, “
Dynamic Equations and Bulk Viscosity Near the Gas-Liquid Critical Point
,”
Phys. Rev. E
,
55
(
1
), pp.
403
420
.10.1103/PhysRevE.55.403
30.
Onuki
,
A.
,
2002
, “
Phase Transition Dynamics
,”
Dynamics in Fluids
,
Cambridge University
,
Cambridge, UK
.
31.
Moldover
,
M. R.
,
Sengers
,
J. V.
,
Gammon
,
R. W.
, and
Hocken
,
R. J.
,
1979
, “
Gravity Effects in Fluids Near the Gas-Liquid Critical Point
,”
Rev. Mod. Phys.
,
51
(
1
), pp.
79
99
.10.1103/RevModPhys.51.79
32.
Sabersky
,
R. H.
, and
Hauptmanni
,
E. G.
,
1967
, “
Forced Convective Heat Transfer to Carbon Dioxide Near the Critical Point
,”
Int. J. Heat Mass Transfer
,
10
, pp.
1499
1508
.10.1016/0017-9310(67)90003-8
33.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
53
(
1
), pp.
3
8
.
34.
Carlès
,
P.
, and
Dadzie
,
K.
,
2005
, “
Two Typical Time Scales of the Piston Effect
,”
Phys. Rev. E
,
71
(
6
), p.
066310
.10.1103/PhysRevE.71.066310
35.
Brüel&Kjær
,
2009
, “
Product Catalogue—Microphones & Conditioning
,”
Catalog
,
16
, pp.
2
7
.
36.
Lin
,
Y.
,
2007
, “
Acoustic Wave Induced Convection and Transport in Gases Under Normal and Micro-Gravity Conditions
,” Ph.D. thesis, Drexel University, Philadelphia, PA.
You do not currently have access to this content.