This paper presents an experimental investigation of whether heat transfer performance in an oscillating heat pipe (OHP) would improve if the inner surface of the heat pipe was coated with a layer of copper oxide (CuO). The OHP had six turns and three sections, i.e., evaporator, condenser, and adiabatic section with lengths of 40 mm, 64 mm, and 51 mm, respectively. The cleaned copper tubing was chemically treated with a chemical solution and heated in a furnace. A microstructure layer of CuO was formed in the inner surface of the OHP with K2S2O8 and KOH. The working fluid in this study was water with filling ratios ranging from 40% to 70%. The experimental results show that the CuO microstructure layer is superhydrophilic and can enhance the OHP heat transfer performance. The investigation results in a new way to enhance the heat transfer performance of an OHP.

References

References
1.
Wilson
,
C.
,
Borgmeyer
,
B.
, and
Winholtz
,
R. A.
,
2008
, “
Visual Observation of Oscillating Heat Pipes Using Neutron Radiography
,”
J. Thermophys. Heat Transf.
,
22
(
3
), pp.
366
372
.10.2514/1.33758
2.
Khandekar
,
S.
,
Charoensawan
,
P.
, and
Groll
,
M.
,
2003
, “
Closed Loop Pulsating Heat Pipes—Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2021
2033
.10.1016/S1359-4311(03)00168-6
3.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2008
, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Trans.
,
130
(
8
), p. 081501.10.1115/1.2909081
4.
Rittidech
,
S.
,
Terdtoon
,
P.
, and
Murakami
,
M.
,
2003
, “
Correlation to Predict Heat Transfer Characteristics of a Closed-End Oscillating Heat Pipe at Normal Operating Condition
,”
Appl. Therm Eng.
,
23
(
4
), pp.
497
510
.10.1016/S1359-4311(02)00215-6
5.
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2008
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.10.1016/j.applthermaleng.2007.05.007
6.
Lin
,
Y.
,
Kang
,
S.
, and
Chen
,
H.
,
2008
, “
Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1312
1317
.10.1016/j.applthermaleng.2007.10.019
7.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Trans.
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
8.
Qu
,
W.
, and
Ma
,
H.
,
2007
, “
Theoretical Analysis of Startup of a Pulsating Heat Pipe
,”
Int. J. Heat Mass Transf.
,
50
(
11–12
), pp.
2309
2316
.10.1016/j.ijheatmasstransfer.2006.10.043
9.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Comm. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.10.1016/j.icheatmasstransfer.2009.10.001
10.
Fumoto
,
K.
,
Kawaji
,
M.
, and
Kawanami
,
T.
,
2010
, “
Study on a Pulsating Heat Pipe With Self-Rewetting Fluid
,”
ASME J. Electron. Packaging
,
132
(
3
), p.
031005
.10.1115/1.4001855
11.
Qu
,
J.
, and
Wu
,
H.
,
2011
, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1954
1962
.10.1016/j.ijthermalsci.2011.04.004
12.
Ji
,
Y.
,
Wilson
,
C.
,
Chen
,
H.-H.
, and
Ma
,
H.
,
2011
, “
Particle Shape Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Nanosc. Res. Lett.
,
6
(
1
), p.
296
.10.1186/1556-276X-6-296
13.
Ji
,
Y.
,
Ma
,
H.
,
Su
,
F.
, and
Wang
,
G.
,
2011
, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exper. Therm. Fluid Sci.
,
35
(
4
), pp.
724
727
.10.1016/j.expthermflusci.2011.01.007
14.
Ji
,
Y.
,
Chen
,
H.-H.
,
Kim
,
Y. J.
,
Yu
,
Q.
,
Ma
,
X.
, and
Ma
,
H. B.
,
2012
, “
Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Heat Trans.
,
134
(
7
), p.
074502
.10.1115/1.4006111
15.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4,921,041.
16.
Qian
,
B.
, and
Shen
,
Z.
,
2006
, “
Super-Hydrophobic CuO Nanoflowers by Controlled Surface Oxidation on Copper
,”
Wuji Cailiao Xuebao/J. Inorgan Mater.
,
21
(
3
), pp.
747
752
.
17.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes
,
Wiley
,
New York
, pp.
256
–259.
You do not currently have access to this content.