Metal foams are of interest for heat transfer applications because of their high surface-to-volume ratio and high convective heat transfer coefficients. However, conventional open-cell foams have high pressure drop and low net thermal conductivity in the direction normal to a heated surface due to the fully random structure. This paper examines heat transfer elements made by stacking thin layers of lotus metal which have many small pores aligned in the flow direction. The reduction in randomness reduces the pressure drop and increases the thermal conduction compared to conventional metal foams. Experimental results are presented for the heat transfer performance of two types of lotus metal fins, one with a deterministic pattern of machined holes and one with a random hole pattern made by a continuous casting technique. The layer spacing, the hole diameter, the porosity, and the flow Reynolds number were all varied. The measurements show that spacing between fin layers and the relative alignment of pores in successive fins can have a substantial effect on the heat transfer performance.

References

References
1.
Onstad
,
A. J.
,
Elkins
,
C. J.
,
Medina
,
F.
,
Wicker
,
R. B.
, and
Eaton
,
J. K.
,
2011
, “
Full-Field Measurements of Flow Through a Scaled Metal Foam Replica
,”
Exp. Fluids
,
50
, pp.
1571
1585
.10.1007/s00348-010-1008-8
2.
Hoberg
,
T. B.
,
Muramatsu
,
K.
,
Cherry
,
E. M.
, and
Eaton
,
J. K.
,
2011
, “
Thermal Dispersion in Metal Foams
,” Proceedings of
AJTEC2011
, Paper No. AJTEC2011-44640.10.1115/AJTEC2011-44640
3.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Trans.
,
122
(
3
), pp.
572
578
.10.1115/1.1287170
4.
Ma
,
Y.
,
Yu
,
B.
,
Zhang
,
D.
, and
Zou
,
M.
,
2003
, “
A Self-Similarity Model for Effective Thermal Conductivity of Porous Media
,”
J. Phys. D
,
36
, pp.
2157
2164
.10.1088/0022-3727/36/17/321
5.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of Highly Porosity Fibrous Metal Foams
,”
ASME J. Heat Trans.
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
6.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
, pp.
453
464
.10.1023/A:1006643815323
7.
Schmierer
,
E. N.
, and
Razani
,
A.
,
2006
, “
Self-Consistent Open-Celled Metal Foam Model for Thermal Applications
,”
ASME J. Heat Trans.
,
128
(
11
), pp.
1194
1203
.10.1115/1.2352787
8.
Nakajima
,
H.
,
2010
, “
Fabrication, Properties and Applications of Porous Metals With Directional Pores
,”
Proc. Jpn. Acad. Ser. B
,
86
, pp.
884
899
.10.2183/pjab.86.884
9.
Behrens
,
E.
,
1968
, “
Thermal Conductivities of Composite Materials
,”
J. Compos. Mater.
,
2
, pp.
2
17
.10.1177/002199836800200417
10.
Han
,
L. S.
, and
Cosner
,
A. A.
,
1981
, “
Effective Thermal Conductivities of Fibrous Composites
,”
ASME J. Heat Trans.
,
103
(
2
), pp.
387
392
.10.1115/1.3244471
11.
Ogushi
,
T.
,
Chiba
,
H.
,
Nakajima
,
H.
, and
Ikeda
,
T.
,
2004
, “
Measurement and Analysis of Effective Thermal Conductivities of Lotus-Type Porous Copper
,”
J. Appl. Phys.
,
95
, pp.
5843
5847
.10.1063/1.1691188
12.
Chiba
,
H.
,
Ogushi
,
T.
,
Nakajima
,
H.
, and
Ikeda
,
T.
,
2004
, “
Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink
,”
JSME Int. J. Ser. B
,
47
, pp.
516
521
.10.1299/jsmeb.47.516
13.
Chiba
,
H.
,
Ogushi
,
T.
, and
Nakajima
,
H.
,
2010
, “
Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink for Air Cooling
,”
J. Thermal Sci. Technol.
,
5
, pp.
222
237
.10.1299/jtst.5.222
14.
Chiba
,
H.
,
Ogushi
,
T.
, and
Nakajima
,
H.
,
2011
, “
Development of Heat Sinks for Air Cooling and Water Cooling Using Lotus-Type Porous Metals
,” Proceedings of
AJTEC2011
, Paper No. AJTEC2011-44108.10.1115/AJTEC2011-44108
15.
Park
,
J. S.
,
Hyun
,
S. K.
,
Suzuki
,
H.
, and
Nakajima
,
H.
,
2007
, “
Effect of Transference Velocity and Hydrogen Pressure on Porosity and Pore Morphology of Lotus-Type Porous Copper Fabricated by a Continuous Casting Technique
,”
Acta Mater.
,
55
, pp.
5646
5654
.10.1016/j.actamat.2007.06.022
16.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
,
2nd ed.
,
McGraw-Hill
,
New York
, p.
135
.
17.
Blanchet
,
S.
,
1997
, “
The Periodic Technique for Measuring Convective Transport and Flow Friction Characteristics of Catalytic Reactors
,”
SAE
International, Technical Paper No. 971808.10.4271/971808
18.
Onstad
,
A. J.
,
Moffat
,
R. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2009
, “
Additions to Compact Heat Exchanger Technology: Jet Impingement Cooling & Flow & Heat Transfer in Metal Foam-Fins
,” Technical Report No. TF-112, FPCE,
Stanford University
,
Stanford, CA
.
19.
Moffat
,
R. J.
,
Eaton
,
J. K.
, and
Onstad
,
A. J.
,
2009
A Method for Determining the Heat Transfer Properties of Foam-Fins
,”
ASME J. Heat Trans.
,
131
(
1
), p.
011603
.10.1115/1.2977599
20.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 1: Average Heat
,”
ASME J. Eng. Power
,
102
(
4
), pp.
994
999
.10.1115/1.3230372
21.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
, Advances in Heat Transfer, Supplement 1,
Academic
,
New York
, p.
143
.
22.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
,
4th ed.
,
McGraw-Hill
,
New York
, p.
155
.
You do not currently have access to this content.