The history of the study of fluid solidification in stagnation flow is limited to a few cases. Among these few studies, only some articles have considered the fluid viscosity and yet pressure variations along the thickness of the viscous layer have not been taken into account and the energy equation has been assumed to be one-dimensional. In this study the solidification of stagnation flows is modeled as an accelerated flat plate moving toward an impinging fluid. The unsteady momentum equations, taking the pressure variations along viscous layer thickness into account, are reduced to ordinary differential equations by the use of proper similarity variables and are solved by using a fourth-order Runge-Kutta integrating method at each prescribed interval of time. In addition, the energy equation is numerically solved at any step for the known velocity and the problem is presented in a two-dimensional Cartesian coordinate. Comparisons of these solutions are made with existing special ranges of past solutions. The fluid temperature distribution, transient velocity component distribution, and, most important of all the rate of solidification or the solidification front are presented for different values of nondimensional Prandtl and Stefan numbers. The results show that an increase of the Prandtl numbers (up to ten times) or an increase of the heat diffusivity ratios (up to two times) causes a decrease of the ultimate frozen thickness by almost half, while the Stefan number has no effect on this thickness and its effect is only on the freezing time.

References

References
1.
Stefan
,
J.
,
1891
, “
Uber die theorie der eisbildung, insbesondere uber die eisbildung in polarmaere
,”
Ann. Phys. Chem.
,
42
, pp.
269
286
.
2.
Goodrich
,
L. E.
,
1978
, “
Efficient Numerical Technique for One-Dimensional Thermal Problems With Phase Change
,”
Int. J. Heat Mass Transfer
,
21
, pp.
615
621
.10.1016/0017-9310(78)90058-3
3.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Harris
,
S.
,
1981
, “
The Transition From Natural Convection Controlled Freezing to Conduction Controlled Freezing
,”
ASME J. Heat Transfer
,
103
, pp.
7
13
.10.1115/1.3244435
4.
Lacroix
,
M.
,
1989
, “
Computation of Heat Transfer During Melting of a Pure Substance From an Isothermal Wall
,”
Numer. Heat Transfer, Part B
15
, pp.
191
210
.10.1080/10407798908944900
5.
Yeoh
,
G. H.
,
Behnia
,
M.
,
De Vahl Davis
,
G.
, and
Leonardi
,
E.
,
1990
, “
A Numerical Study of Three-Dimensional Natural Convection During Freezing of Water
,”
Int. J. Numer.Methods Eng.
,
30
, pp.
899
914
.10.1002/nme.1620300420
6.
Hadji
,
L.
and
Schell
,
M.
,
1990
, “
Interfacial Pattern Formation in the Presence of Solidification and Thermal Convection
,”
Phys. Rev. A
,
41
, pp.
863
873
.10.1103/PhysRevA.41.863
7.
Hanumanth
,
G. S.
,
1990
, “
Solidification in the Presence of Natural Convection
,”
Int. Commun. Heat Mass Transfer
,
17
, pp.
283
292
.10.1016/0735-1933(90)90093-Y
8.
Oldenburg
,
C. M.
, and
Spera
,
F. J.
,
1992
, “
Hybrid Model for Solidification and Convection
,”
Numer, Heat Transfer, Part B
,
21
, pp.
217
229
.10.1080/10407799208944917
9.
Trapaga
,
G.
,
Matthys
,
E. F.
,
Valecia
,
J. J.
, and
Szekely
,
J.
,
1992
, “
Fluid Flow, Heat Transfer and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results
,”
Metall. Trans. B
,
23B
, pp.
701
718
.10.1007/BF02656450
10.
Watanabe
,
T.
,
Kuribayashi
, I
.
,
Honda
,
T.
, and
Kanzawa
,
A.
,
1992
, “
Deformation and Solidification of a Droplet on a Cold Substrate
,”
Cham. Eng. Sci.
,
47
, pp.
3059
3065
.10.1016/0009-2509(92)87006-C
11.
San Marchi
,
C.
,
Liu
,
H.
,
Lavernia
,
E. J.
, and
Rangel
,
R. H.
,
1993
, “
Numerical Analysis of the Deformation and Solidification of a Single Droplet Impinging on to a Flat Substrate
,”
J. Mater. Sci.
,
28
, pp.
3313
3321
.10.1007/BF00354253
12.
Brattkus
,
K.
, and
Davis
,
S. H.
,
1988
, “
Flow Induced Morphological Instabilities: Stagnation-Point Flows
,”
J. Cryst. Growth
,
89
, pp.
423
427
.10.1016/0022-0248(88)90202-3
13.
Rangel
,
R. H.
, and
Bian
,
X.
,
1994
, “
The Inviscid Stagnation-Flow Solidification Problem
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1591
1602
.10.1016/0017-9310(95)00260-X
14.
Lambert
,
R. A.
, and
Rangel
,
R. H.
,
2003
, “
Solidification of a Super-Cooled Liquid in Stagnation-Point Flow
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4013
4021
.10.1016/S0017-9310(03)00248-5
15.
Rangel
,
R. H.
, and
Bian
,
X.
,
1996
, “
The Viscous Stagnation-Flow Solidification Problem
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3581
3594
.10.1016/0017-9310(95)00260-X
16.
Yoo
,
J. S.
,
2000
, “
Effect of Viscous Plane Stagnation Flow on the Freezing of Fluid
,”
Int. J. Heat Fluid Flow
,
21
, pp.
735
739
.10.1016/S0142-727X(00)00059-X
17.
Shokrgozar Abbasi
,
A.
, and
Rahimi
,
A. B.
,
2012
, “
Investigation of Two-Dimensional Unsteady Stagnation Flow and Heat Transfer Impinging on an Accelerated Flat Plate
,”
ASME J. Heat Transfer
,
134
(
6
), p.
064501
.10.1115/1.4005742
18.
Hong
,
C.
,
Yamamoto
,
T.
,
Asako
,
Y.
, and
Suzuki
,
K.
,
2012
, “
Heat Transfer Characteristics of Compressible Laminar Flow Through Microtubes
,”
ASME J. Heat Transfer
,
134
, p.
011602
.10.1115/1.4004645
19.
Alassar
,
R.
, and
Abushoshah
,
M.
,
2012
, “
Hagen-Poiseuille Flow in Semi-Elliptic Microchannels
,”
ASME J. Fluids Eng.
,
134
, p.
124502
.10.1115/1.4007900
20.
Norouzi
,
M.
,
Rezaei Niya
,
S. M.
,
Kayhani
,
M. H.
,
Shariati
,
M.
,
Karimi Demneh
,
M.
, and
Naghavi
,
M. S.
,
2012
, “
Exact Solution of Unsteady Convective Heat Transfer in Cylindrical Composite Laminates
,”
ASME J. Heat Transfer
,
134
,
p
. 101301.10.1115/1.4006009
21.
Pitts
,
D. R.
, and
Sissom
,
L. E.
,
1977
,
Theory and Problems of Heat Transfer
,
Schaum's Outlines Series, McGraw-Hill
,
New York
.
You do not currently have access to this content.