In order to get insights into the mechanisms governing the heat transfer deterioration (HTD) of supercritical water, systematical numerical simulations were carried out in the present study for the flow and heat transfer of supercritical pressure water in horizontal smooth tubes. The numerical results were found in very good agreement with the corresponding experimental data, validating the reliability and accuracy of the numerical model and the computational method. It was found that from these profiles along the top generatrix of the wall of the horizontal tube, there exists a thin fluid layer in which the thermo-physical properties of the fluid, including the specific heat capacity, thermal conductivity, density and viscosity, all approach its minimum at a roughly identical axial position of the tube with the increasing of the bulk fluid enthalpy along the flow direction. The maximum wall temperature of the top generatrix, obviously show the occurrence of HTD. It was especially interesting that the axial position of the maximum top generatrix wall temperature (HTD position) just coincided with the axial positions of the minimum of the above-mentioned thermophysical properties in the near top generatrix layer, which reveals the inherent connection between the HTD and the minimum value of the above-mentioned thermophysical properties of the supercritical water. It was concluded that the HTD of supercritical water in horizontal tubes was evidently due to the vertical stratification and the accumulation of light supercritical pressure fluid (very high enthalpy but low density) in the near top generatrix region. Also, the HTD phenomena under supercritical condition was similar to that of the film boiling of the subcritical pressure water. This result clearly reveals why the axial position of the HTD occurred on the top wall of horizontal tubes (with bulk fluid enthalpy of roughly 1750 kJ/kg) is axially far ahead of the position corresponding to the critical point of the supercritical water (with bulk fluid enthalpy of roughly 2150 kJ/kg) in terms of the bulk fluid enthalpy.

References

References
1.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2407
2430
.10.1016/j.nucengdes.2005.05.034
2.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
,
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP
Version 8.0, NIST standard reference database 23.
3.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Heat Transmission at Supercritical Pressure
,”
Teplofiz. Vys. Temp.
,
1
(
3
), pp.
267
275
(in Russian).
4.
Yamagata
,
K.
,
Yoshida
,
S.
,
Fujii
,
T.
,
Hasegawa
,
S.
, and
Nishikaw
,
K
,
1972
, “
Forced Convective Heat-Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2592
.10.1016/0017-9310(72)90148-2
5.
Adebiyi
,
G. A.
, and
Hall
,
W. B.
,
1976
, “
Experimental Investigation of Heat-Transfer to Supercritical Pressure Carbon-Dioxide in a Horizontal Pipe
,”
Int. J. Heat Mass Transfer
,
19
(
7
), pp.
715
720
.10.1016/0017-9310(76)90123-X
6.
Gang
,
W.
,
Bi
,
Q. C.
,
Wang
,
H.
,
Yang
,
Z. D.
,
Zhu
,
X. J.
, and
Hu
,
Z. H.
,
2012
, “
Forced Convection Heat Transfer Using High Temperature and Pressure Water in an Upward-Inclined Tube
,”
ASME J. Heat Trans.
,
134
(
2
), p.
020905
.10.1115/1.4004901
7.
Ackerman
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Trans.
,
92
(
3
), pp.
490
497
.10.1115/1.3449698
8.
Domin
,
G.
,
1963
, “
Wärmeübergang in Kritischen Und Berkritischen Bereichen Von Wasser in Rohren
,”
Brennst-Wäirme-Kraft
,
15
(11), pp.
527
532
(in German).
9.
Dickinson
,
N. L.
, and
Weich
,
C. P.
,
1958
, “
Heat Transfer to Supercritical Water
,”
Trans. ASME
,
80
, pp.
745
751
.
10.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1969
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,”
ASME J. Heat Trans.
,
91
(
1
), pp.
27
36
.10.1115/1.3580115
11.
Shitsman
,
M. E.
,
1966
, “
The Effect of Natural Convection on Temperature Conditions in Horizontal Tubes at Supercritical Pressures
,”
Therm. Eng.
,
13
(
7
), pp.
69
75
(in Russian).
12.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.10.1016/j.supflu.2007.11.013
13.
Cheng
,
X.
, and
Schulenberg
,
T.
,
2001
, “
Heat Transfer at Supercritical Pressures-Literature Review and Application to an HPLWR
,” Institute for Nuclear and Energy Engineering Nuclear Safety Research, Karlsruhe, Technical Report No. FZKA 6609.
14.
Bazargan
,
M.
,
Fraser
,
D.
, and
Chatoorgan
, V
.
,
2005
, “
Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in a Horizontal Round Tube
,”
ASME J. Heat Trans.
,
127
(
8
), pp.
897
902
.10.1115/1.1929787
15.
Petukhov
,
B. S.
, and
Polyakov
,
A. F.
,
1986
,
Heat Transfer in Turbulent Mixed Convection
,
Hemisphere Publishing Corp
.,
New York.
16.
Kim
,
S. H.
,
Kim
,
Y. I.
,
Bae
,
Y. Y.
, and
Cho
,
B. H.
,
eds.
,
2004
,
Numerical Simulation of the Vertical Upward Flow of Water in a Heated Tube at Supercritical Pressure
,
ICAPP'04: 2004 International Congress on Advances in Nuclear Power Plants
,
Pittsburgh, PA
, Paper No. 4047, pp.
5
10
.
17.
Roelofs
,
F.
,
2004
, “
CFD Analyses of Heat Transfer to Supercritical Water Flowing Vertically Upward in a Tube
,” Technical Report No. 21353/04.60811/P.
18.
Shang
,
Z.
,
Yao
,
Y. F.
, and
Chen
,
S.
,
2008
, “
Numerical Investigation of System Pressure Effect on Heat Transfer of Supercritical Water Flows in a Horizontal Round Tube
,”
Chem. Eng, Sci.
,
63
(
16
), pp.
4150
4158
.10.1016/j.ces.2008.05.036
19.
Zhang
,
X. R.
, and
Yamaguchi
,
H.
,
2007
, “
Forced Convection Heat Transfer of Supercritical CO2 in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
41
(
3
), pp.
412
420
.10.1016/j.supflu.2006.11.003
20.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Trans.
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
21.
Gu
,
H. Y.
,
Cheng
,
X.
, and
Yang
,
Y. H.
,
2010
, “
CFD Analysis of Thermal-Hydraulic Behavior of Supercritical Water in Sub-Channels
,”
Nucl. Eng. Des.
,
240
(
2
), pp.
364
374
.10.1016/j.nucengdes.2008.08.022
22.
Kao
,
M.
,
Lee
,
M.
,
Ferng
,
Y.
, and
Chieng
,
C.
,
2010
, “
Heat Transfer Deterioration in a Supercritical Water Channel
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3321
3328
.10.1016/j.nucengdes.2010.06.028
23.
Shang
,
Z.
, and
Chen
,
S.
,
2011
, “
Numerical Investigation of Diameter Effect on Heat Transfer of Supercritical Water Flows in Horizontal Round Tubes
,”
Appl. Therm. Eng.
,
31
(
4
), pp.
573
581
.10.1016/j.applthermaleng.2010.10.020
24.
Orszag
,
S. A.
,
Yakhot
,
V.
,
Flannery
,
W. S.
,
Boysan
,
F.
,
Choudhury
,
D.
,
Maruzewski
,
J.
, and
Patel
.,
B.
,
1993
,
“Renormalization Group Modeling and Turbulence Simulations
,”
International Conference on Near-Wall Turbulent Flows
,
Tempe, AZ
.
25.
Palko
,
D.
, and
Anglart
,
H.
,
2008
, “
Science and Technology of Nuclear Installations
,”
Theoretical and Numerical Study of Heat Transfer Deterioration in HPLWR
,
Hindawi Publishing Corporation
,
New York
.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
27.
Visser
,
D. C.
,
Nijeholt
,
J. a
.
L. A.
, and
Roelofs
,
F.
, eds.,
2008
,
CFD Predictions of Heat Transfer in Super Critical Flow Regime
,
Proc. of ICAPP 2008
,
Anaheim, CA
.
28.
Zhu
,
Y.
,
2010
, “
Numerical Investigation of the Flow and Heat Transfer Within the Core Cooling Channel of a Supercritical Water Reactor
,” M.S. thesis, Universität Stuttgart, Stuttgart, Germany.
29.
Wen
,
Q. L.
, and
Gu
,
H. Y.
,
2010
, “
Numerical Simulation of Heat Transfer Deterioration Phenomenon in Supercritical Water Through Vertical Tube
,”
Ann. Nucl. Energy
,
37
(
10
), pp.
1272
1280
.10.1016/j.anucene.2010.05.022
30.
Farah
,
A.
,
Kinakin
,
M.
,
Harvel
,
G.
, and
Pioro
, I
.
,
2011
, “
Numerical Study of Supercritical Water Heat Transfer in Vertical Bare Tubes Using FLUENT CFD Code
,”
5th Int. Sym. SCWR (ISSCWR-5)
,
Vancouver, BC, Canada
, Mar. 13–16, Paper No. P54, pp.
1
14
.
31.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Trans.
,
133
(5), p.
051701
.10.1115/1.4003080
32.
Tao
,
W. Q.
,
2001
,
Numerical Heat Transfer
,
Xi'an Jiaotong University Press
,
Xi'an, China
.
33.
Ansys
,
F.
,
2002
,
Ansys Fluent, Ansys, Inc.
,
Canonsburg, PA
.
34.
van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Trans.
,
7
(2), pp.
147
163
.10.1080/01495728408961817
35.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
585
.10.1063/1.1461829
36.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic
Press,
London
.
37.
Yu
,
S. Q.
,
Li
,
H. X.
,
Lei
,
X. L.
,
Zhang
,
Y. F.
, and
Chen
,
T. K.
, eds.,
2011
, “
A Comparison of Heat Transfer Characteristics of Supercritical Pressure Water Flow in Different Arrangement Experimental Tubes
,” 5th Int. Sym. SCWR, Vancouver, BC, Canada, pp.
1
10
.
38.
Yu
,
S. Q.
,
Li
,
H. X.
,
Lei
,
X. L.
,
Wang
,
C. C.
,
Zhang
,
Y. F.
, and
Chen
,
T. K.
, eds.,
2011
, “
Study on the Effect of Flowing Orientation on the Flow and Heat Transfer Charactersitics of Supercritical Water in Different Tubes
,”
Proceedings of the ASME 2011 Power Conference Co-Located With International Conference on Power Engineering
,
Denver
,
CO
, 1–9.
39.
Ishigan
,
S.
,
Kadzhin
, I
.
, and
Nakamoto
,
M.
,
1976
, “
Heat Transfer and Skin Friction in a Water Flow in Tubes at Supercritical Pressure,” Heat and Mass Transfer V
,
Teploenergetika (Moscow, Russ. Fed.)
, pp.
261
269
(in Russian).
40.
Zhukovskii
,
A.
V
.
, and
Kareva
,
L. V.
,
1973
, “
Heat Transfer to Supercritical Water in a 30-Mm Diameter Tube
,”
Trudi TsKTI
,
114
, pp.
40
59
(in Russian).
41.
Vikhrev
,
Y.
V
.
,
Konkov
,
A. S.
,
Solomono
,
V. M.
, and
Sinitsyn
,
I. T.
,
1973
, “
Heat-Transfer in Horizontal and Inclined Steam-Generating Tubes at Supercritical Pressures
,”
High Temp.
,
11
(
6
), pp.
1183
1185
(in Russian).
42.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
,
Turbulent Forced Convection in Channels and Bundles
,
Hemisphere Publishing Corp.
,
New York
.
You do not currently have access to this content.