At high superheat, bubble growth is rapid and the heat transfer is dominated by radial convection. This has been found, in the case of a droplet boiling within another liquid and in the case of a bubble growing on a heated wall, leading to similar bubble growth curves. Based on an experimental parametric study for the droplet-boiling case, an empirical model was developed for the prediction of bubble growth, within the radial convection dominated regime (the RCD model) occurring only at high superheat. This model suggests a dependence of R∼t1/3—equivalent to a Nusselt number decreasing over time (Nu∼t−1/3), as opposed to R∼t1/2 —equivalent to a highly-unlikely constant Nusselt number, in most other models. The new model provides accurate prediction for both the droplet boiling and nucleate pool boiling cases, in the medium-high superheat range (0.26<Ste <0.41, 0.19<Ste<0.30, accordingly). By comparison, the new RCD model shows a more consistent prediction, than previous empirical models. However, in the nucleate boiling case, the RCD model requires the foreknowledge of the departure diameter, for which a reliable model still is lacking.

References

References
1.
Shepherd
J. E.
, and
Sturtevant
,
1982
, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mech.
,
121
, pp.
379
402
.10.1017/S0022112082001955
2.
Frost
,
D. L.
,
1998
, “
Dynamics of Exploding Boiling of a Droplet
,
Phys. Fluids
,
31
, pp.
2554
2561
.10.1063/1.866608
3.
Song
,
M.
,
Steiff
,
A.
,
Weinspach
P. M.
,
1999
, “
Direct-Contact Heat Transfer With Change of Phase: A Population Balance Model
Chem. Sci. Eng.
,
54
, pp.
3861
3871
.10.1016/S0009-2509(99)00029-9
4.
Sideman
,
S.
, and
Taitel
Y.
,
1964
, “
Direct-Contact Heat Transfer With Change of Phase: Evaporation of Drops in an Immiscible Liquid Medium
,”
Int. J. Heat Mass Transfer
,
7
, pp.
1273
1289
.10.1016/0017-9310(64)90068-7
5.
Shimizu
,
Y.
, and
Mori
,
Y. H.
,
1988
, “
Evaporation of Single Liquid Drops in an Immiscible Liquid at Elevated Pressures: Experimental Study With n-pentane and R 113 Drops in Water
,”
Int. J. Heat Mass Transfer
,
31
, pp.
1843
1851
.10.1016/0017-9310(88)90198-6
6.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rate
,”
Int. Heat Mass Transfer
,
13
, pp.
657
666
.10.1016/0017-9310(70)90040-2
7.
Theofanous
,
T. G.
, and
Patel
,
P. D.
,
1976
, “
Universal Relations for Bubble Growth
,”
Int. J. Heat Mass Transfer
,
19
, pp.
425
429
.10.1016/0017-9310(76)90098-3
8.
Prosperetti
A.
, and
Plesset
,
M.
,
1978
, “
Vapor-Bubble Growth in a Superheated Liquid
,”
J. Fluid Mech.
,
85
, pp.
349
368
.10.1017/S0022112078000671
9.
Lee
,
H. S.
, and
Merte
,
H.
, Jr.
,
1996
, “
Spherical Vapor Bubble Growth in Uniformly Superheated Liquids
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2427
2447
.10.1016/0017-9310(95)00342-8
10.
Han
,
C.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
8
, pp.
905
913
.10.1016/0017-9310(65)90074-8
11.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
(
Taylor and Francis
,
London
,
1992
).
12.
Moghaddam
,
S.
,
2006
, “
Microscale Study of Nucleation Process in Boiling of Low-Surface-Tension Liquids
” Ph.D. thesis, University of Maryland, College Park, MD.
13.
Cole
,
R.
, and
Shulman
,
H. L.
,
1966
, “
Bubble Growth Rates at High Jackob Numbers
,”
Int. J. Heat Mass Transfer
,
9
, pp.
1377
1390
.10.1016/0017-9310(66)90135-9
14.
Moghaddam
,
S.
, and
Kegir
,
K.
,
2009
, “
Physical Mechanisms of Heat Transfer During Single Bubble Nucleate Boiling of FC-72 Under Saturation Conditions –I. Experimental Investigation
,”
Int. J. Heat Mass Tranfer
,
52
, pp.
1284
1294
.10.1016/j.ijheatmasstransfer.2008.08.018
15.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Bubble Nucleation Characteristics in Pool Boiling of a Wetting Liquid on Smooth and Roughened Surfaces
,”
Int. J. Multiphase Flow
,
36
, pp.
249
260
.10.1016/j.ijmultiphaseflow.2009.12.004
16.
Forester
,
H. K.
, and
Zuber
,
N.
,
1954
, “
Growth of Vapor Bubbles in Superheated Liquid
,”
J. Appl. Phys.
,
25
, pp.
474
478
.10.1063/1.1721664
17.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
J. Heat Transfer
,
91
, pp.
245
250
.10.1115/1.3580136
18.
Cooper
,
M. G.
,
1969
, “
The Microlayer and Bubble Growth in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
, pp.
915
933
.10.1016/0017-9310(69)90155-0
19.
Van Stralen
,
S.J.D.
,
Sohal
,
M. S.
,
Cole
,
R.
, and
Sluyter
,
W. M.
,
1975
, “
Bubble Growth Rates in Pure and Binary Systems: Combined Effect of Relaxation and Evaporation Microlayers
,”
Int. J. Heat Mass Transfer
,
18
, pp.
453
467
.10.1016/0017-9310(75)90033-2
20.
Griffith
,
P.
,
1956
,
” Bubble Growth Rates in Boiling
,”
ASME J. Heat Transfer
,
80
, pp.
721
726
.
21.
Staniszewski
,
B. E.
,
1959
, “
Nucleate Boiling Bubble Growth and Departure
,” M.I.T. Cambridge, MA, Tech. Rep. No. 16.
22.
Lee
,
H. C.
,
Kim
,
J.
,
Oh
,
B. D.
, and
Kim
,
M. H.
,
2004
, “
Single Bubble Growth in Saturated Pool Boiling of Binary Mixtures
,”
Int. J. Multiphase Flow
,
30
, pp.
697
710
.10.1016/j.ijmultiphaseflow.2004.05.007
23.
Stewart
,
K. S.
, and
Cole
,
R.
,
1972
, “
Bubble Growth Rates During Nucleate Boiling at High Jakob Numbers
Int. J. Mass Transfer
,
15
, pp.
655
664
.10.1016/0017-9310(72)90111-1
24.
Haustein
,
H. D.
,
Gany
,
A.
, and
Elias
,
E.
,
2009
, “
Rapid Boiling of a Two-Phase Droplet in an Immiscible Liquid at High Superheat
,”
ASME J. Heat Transfer
,
131
(
12
), pp.
121010
121017
.10.1115/1.3220146
25.
Haustein
,
H. D.
,
2009
, “
Investigation of Bubbly Flow Creation Through Phase Change, for Application in Marine Ramjet
,” Ph.D. thesis, Technion IIT, Haifa, Israel.
26.
“Thermophysical Properties of Fluid Systems
,”
2011
, NIST Chemistry WebBook, Standard Reference Database #69,
P. J.
Linstrom
and
W. G.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg MD
; http://webbook.nist.gov, (retrieved July 24, 2012).
27.
Mori
,
Y. H.
,
1978
, “
Configuration of Gas-Liquid Two-Phase Bubbles in Immiscible Liquid Media
,”
Int. J. Multiphase Flow
,
4
, pp.
383
396
.10.1016/0301-9322(78)90032-0
28.
Legendre
,
D.
,
Bore'e
J.
, and
Magnaudet
,
J.
,
1998
, “
Thermal and Dynamic Evolution of a Spherical Bubble Moving Steadily in a Superheated or Subcooled Liquid
,”
Phys. Fluids
,
10
, pp.
1256
1271
.10.1063/1.869654
29.
Ruckenstein
,
E.
, and
Davis
,
E. J.
,
1971
, “
The eEffects of Bubble Translation on Vapor Bubble Growth in a Superheated Liquid
,”
Int. J. Heat Mass Transfer
,
14
, pp.
939
952
.10.1016/0017-9310(71)90120-7
30.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
, pp.
931
980
.10.1103/RevModPhys.69.931
31.
Hall
,
D.
, and
Mudawar
,
I.
,
2000
, “
Critical Heat Flux (CHF) for Water Flow in Tubes—II. Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2605
2640
.10.1016/S0017-9310(99)00192-1
32.
Battya
,
P.
,
Ragharan
,
V. R.
, and
Seetharamu
,
K. N.
,
1984
, “
Parametric Studies on Direct Contact Evaporation of a Drop in an Immiscible Liquid
,”
Int. J. Heat Mass Transfer
,
27
, pp.
263
272
.10.1016/0017-9310(84)90217-5
33.
Kim
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
, pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
34.
Jensen
,
M. K.
, and
Memmel
,
G. J.
,
1986
, “
Evaluation of Bubble Departure Diameter Correlations
,”
Proc. 8th Int. Heat Transfer Conf.
pp.
1907
1912
.
You do not currently have access to this content.