In this paper, the Galerkin method is used to obtain numerical solutions to two-dimensional steady-state reaction-diffusion problems. Uncertainties in reaction and diffusion coefficients are modeled using parameterized stochastic processes. A stochastic version of the Lax–Milgram lemma is used in order to guarantee existence and uniqueness of the theoretical solutions. The space of approximate solutions is constructed by tensor product between finite dimensional deterministic functional spaces and spaces generated by chaos polynomials, derived from the Askey–Wiener scheme. Performance of the developed Galerkin scheme is evaluated by comparing first and second order moments and probability histograms obtained from approximate solutions with the corresponding estimates obtained via Monte Carlo simulation. Results for three example problems show very fast convergence of the approximate Galerkin solutions. Results also show that complete probability densities (histograms) of the responses are correctly approximated by the developed Galerkin basis.

References

References
1.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
John Wiley & Sons
, New York.
2.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
,
2nd ed.
,
Wiley InterScience
, New York.
3.
Matthies
,
H. G.
,
Brenner
,
C. E.
,
Bucher
,
C. G.
, and
Soares
C. G.
,
1997
, “
Uncertainties in Probabilistic Numerical Analysis of Structures and Solids—Stochastic Finite Elements
,”
Struct. Safety
,
19
, pp.
283
336
.10.1016/S0167-4730(97)00013-1
4.
Xiu
,
D.
, and
Karniadakis
G. E.
,
2003
, “
A New Stochastic Approach to Transient Heat Conduction Modeling With Uncertainty
,”
Int. J. Heat Mass Tran.
,
46
, pp.
4681
4693
.10.1016/S0017-9310(03)00299-0
5.
Emery
,
A. F.
,
2004
, “
Solving Stochastic Heat Transfer Problems
,”
Eng. Anal. Bound. Elem.
,
28
, pp.
279
291
.10.1016/S0955-7997(03)00058-4
6.
Spanos
,
P. D.
, and
Ghanem
R.
,
1989
, “
Stochastic Finite Element Expansion for Random Media
,”
J. Eng. Mech.
125
, pp.
26
40
.
7.
Georgiadis
,
J. G.
,
1991
, “
On the Approximate Solution of Non-Deterministic Heat and Mass Transport Problems
,”
Int. J. Heat Mass Tran.
,
34
, pp.
2097
2105
.10.1016/0017-9310(91)90220-9
8.
Madera
,
A. G.
,
1994
, “
Simulation of Stochastic Heat Conduction Processes
,”
Int. J. Heat Mass Tran.
,
37
, pp.
2571
2577
.10.1016/0017-9310(94)90294-1
9.
Hien
,
T. D.
, and
Kleiber
,
M.
,
1997
, “
Stochastic Finite Element Modeling in Linear Transient Heat Transfer
,”
Comput. Method. Appl. M.
,
144
, pp.
111
124
.10.1016/S0045-7825(96)01168-1
10.
Kaminski
,
M.
, and
Hien
,
T. D.
,
1999
, “
Stochastic Finite Element Modeling of Transient Heat Transfer in Layered Composites
,”
Int. Commun. Heat Mass Tran.
,
26
, pp.
801
810
.10.1016/S0735-1933(99)00068-8
11.
Deb
,
M. K.
,
Babuška
, I
.
, and
Oden
,
J. T.
,
2008
, “
Solution of Stochastic Partial Differential Equations Using Galerkin Finite Element Techniques
,”
Comput. Method. Appl. M.
,
190
, pp.
6359
6372
.10.1016/S0045-7825(01)00237-7
12.
Jin
,
B.
, and
Zou
J.
,
2008
, “
Inversion of Robin Coefficient by a Spectral Stochastic Finite Element Approach
,”
J. Comput. Phys.
,
227
, pp.
3282
3306
.10.1016/j.jcp.2007.11.042
13.
Jardak
,
M.
,
Su
,
C. H.
, and
Karniadakis
G. E.
,
2002
, “
Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation
,”
SIAM J. Sci. Comput.
,
17
, pp.
319
338
.10.1023/A:1015125304044
14.
Xiu
,
D.
, and
Shen
,
J.
,
2007
, “
An Efficient Spectral Method for Acoustic Scattering From Rough Surfaces
,”
Commun. Comput. Phys.
,
1
, pp.
54
72
.
15.
Grzywinski
,
M.
, and
Sluzalec
,
A.
,
2000
, “
Stochastic Convective Heat Transfer Equations in Finite Differences Method
,”
Int. J. Heat Mass Tran.
,
43
, pp.
4003
4008
.10.1016/S0017-9310(00)00031-4
16.
Engblom
,
S.
,
Ferm
,
L.
,
Hellander
,
A.
, and
Lötstedt
,
P.
,
2009
, “
Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes
,”
SIAM J. Sci. Comput.
,
31
, pp.
1774
1797
.10.1137/080721388
17.
Phongthanapanich
,
S.
, and
Dechaumphai
,
P.
,
2009
Combined Finite Volume Element Method for Singularly Perturbed Reaction–Diffusion Problems
,”
Appl. Math. Comput.
,
209
, pp.
177
185
.10.1016/j.amc.2008.10.047
18.
Babuška
, I
.
,
Tempone
,
R.
, and
Zouraris
,
G. E.
,
2005
, “
Solving Elliptic Boundary Value Problems With Uncertain Coefficients by the Finite Element Method: The Stochastic Formulation
,”
Comput. Method. Appl. M.
,
194
, pp.
1251
1294
.10.1016/j.cma.2004.02.026
19.
Grigoriu
,
M.
,
1995
,
Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and Matlab Solutions
,
Prentice-Hall
, Englewood Cliffs, NJ.
20.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
, pp.
897
936
.10.2307/2371268
21.
Askey
,
R.
, and
Wilson
,
J.
,
1985
,
Some Basic Hypergeometric Polynomials That Generalize Jacobi Polynomials
, Vol.
319
,
Mem. Amer. Math.
,
Providence, RI
.
22.
Ogura
, H.,
1972
, “
Orthogonal Functionals of the Poisson Process
,”
IEEE Trans. Inform. Theory
,
18
, pp.
473
481
.10.1109/TIT.1972.1054856
23.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier–Hermite Functionals
,”
Ann. Math.
,
48
, pp.
385
392
.10.2307/1969178
24.
Janson
,
S.
,
1997
,
Gaussian Hilbert Spaces
,
Cambridge University Press
, Cambridge, UK.
25.
Frauenfelder
,
P.
,
Schwab
,
C.
, and
Todor
,
R. A.
,
2005
, “
Finite Elements for Elliptic Problems With Stochastic Coefficients
,”
Comput. Method. Appl. M.
,
194
, pp.
205
228
.10.1016/j.cma.2004.04.008
26.
Matthies
,
H. G.
, and
Keese
,
A.
,
2005
, “
Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations
,”
Comput. Method. Appl. M.
,
194
, pp.
1295
1331
.10.1016/j.cma.2004.05.027
27.
Brenner
,
S. C.
, and
Scott
,
L. R.
,
1994
,
The Mathematical Theory of Finite Element Methods
,
Springer-Verlag, New York.
28.
Olsson
,
A. M.
, and
Sandberg
,
G. E.
,
2002
, “
Latin Hypercube Sampling for Stochastic Finite Element Analysis
,”
J. Eng. Mech.
,
128
, pp.
121
125
.10.1061/(ASCE)0733-9399(2002)128:1(121)
29.
Silva
,
C. R. A.
, Jr.
,
2004
, “
Application of the Galerkin Method to Stochastic Bending of Kirchhoff Plates
,” Doctoral thesis, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil (in Portuguese).
You do not currently have access to this content.