Embedding a thermoelectric generator (TEG) in a biological body is a promising way to supply electronic power in the long term for an implantable medical device (IMD). The unique merit of such a method lies in its direct utilization of the temperature difference intrinsically existing throughout the whole biological body. Therefore, it can resolve the service life mismatch between the IMD and its battery. In order to promote the stability of the power-generation capacity of the implanted TEG, this paper is dedicated to study a low cost and highly safe practical pattern of implanting a TEG driven by the radioisotope fuel into a human body. Recurring to the thermal energy releasing during disintegration of the radioactive isotope, it can guarantee a marked promotion in the temperature difference across the implanted TEG, consequently supplying enough power for the IMDs. A bioheat transfer model with or without a large vessel is established to characterize the feasibility and working performance of the method. The numerical simulation and parametric studies on tissue status, device properties, and environmental conditions revealed that, no matter in what conditions, the implanted TEG driven by the radioisotope fuel can always offer a much higher energy output than that provided by body heat alone. Meanwhile, in vivo/surrounding environment, isotope conditions, and intentional skin surface cooling also exhibit a direct influence on the temperature distribution of the implantable TEG and thus affect the working performance. Coordinating with the intentionally imposed cooling on the skin surface, the maximum TEG power can reach several mW, which is strong enough to meet the power consumption of the IMDs. These results were expected to be a valuable reference for designing an implantable TEG, which may actually be used in future clinics.

References

References
1.
Wang
,
F. Z.
,
Hua
,
W.
,
Zhang
,
S.
,
Hum
,
D. Y.
, and
Chen
,
X.
,
2003
, “
Clinical Survey of Pacemakers
,”
China J. Cardiac Arrhyth.
,
7
(
3
), pp.
2000
2001
.10.3760/cma.j.issn.1007-6638.2003.03.022
2.
Zeng
,
F. G.
,
Yu
,
J.
, and
Bai
,
H.
,
2004
, “
Trends in Cochlear Implant
,”
Trends Amplif.
,
8
, pp.
1
34
.10.1177/108471380400800102
3.
Wei
,
X. J.
, and
Liu
,
J.
,
2008
, “
Power Sources and Electrical Recharging Strategies for Implantable Medical Devices
,”
Front. Energy Power Eng. China
,
2
(
1
), pp.
1
13
.10.1007/s11708-008-0016-3
4.
Holmes
,
C. F.
,
2001
, “
The Role of Lithium Batteries in Modern Health Care
,”
J. Power Source
,
97-98
, pp.
739
741
.10.1016/S0378-7753(01)00601-2
5.
Frank
,
D.
, and
Higson
,
P. J. S.
,
2007
, “
Biofuel Cells-Recent Advances and Applications
,”
Biosens. Bioelectron.
,
22
, pp.
1224
1235
.10.1016/j.bios.2006.04.029
6.
Parsonnet
,
V.
,
Berstein
,
A. D.
, and
Perry
,
G. Y.
,
1999
, “
The Nuclear Pacemaker: Is Renewed Interest Warranted?
Am. J. Cardiol.
,
66
(
10
), pp.
837
842
.10.1016/0002-9149(90)90361-4
7.
Mateu
,
L.
, and
Moll
,
F.
,
2005
, “
Review of Energy Harvesting Techniques and Applications for Microelectronics
,”
Proceedings of the SPIE Microtechnologies for the New Millenium, Sevilla
, pp.
359
373
.
8.
Vullers
,
R. J. M.
,
Leonov
,
V.
,
Sterken
,
T.
, and
Schmitz
,
A.
,
2006
, “
Energy Scavengers for Wireless Intelligent Microsystems
,”
On Board Technol.
,
June
, p.
34
.
9.
Snyder
,
G. J.
,
2009
,
Energy Harvesting Technologies: Thermoelectric Energy Harvesting
,
Springer
,
New York
.
10.
Kishi
,
M.
,
Nemoto
,
H.
,
Hamao
,
T.
,
Yamamoto
,
M.
,
Sudou
,
S.
,
Mandai
,
M.
, and
Yamamoto
,
S.
,
1999
, “
Micro-Thermoelectric Modules and Their Application to Wristwatches as an Energy Source
,”
Proceedings of 18th International Conference on Thermoelectrics
, pp.
301
307
.
11.
Huesgen
,
T.
,
Woias
,
P.
, and
Kockmann
,
N.
,
2008
, “
Design and Fabrication of MEMS Thermoelectric Generators With High Temperature Efficiency
,”
Sens. Actuators, A
,
423
, pp.
145
146
.10.1016/j.sna.2007.11.032
12.
Weber
,
J.
,
Potje-Kamloth
,
K.
,
Haase
,
F.
,
Detemple
,
P.
,
Völklein
,
F.
, and
Doll
,
T.
,
2006
, “
Coin-Sized Coiled-Up Polymer Foil Thermoelectric Power Generator for Wearable Electronics
,”
Sens. Actuators, A
,
132
, pp.
325
330
.10.1016/j.sna.2006.04.054
13.
Bavel
,
M. V.
,
Leonov
,
V.
,
Yazicioglu
,
R. F.
,
Torfs
,
T.
,
Hoof
,
C. V.
,
Posthuma
,
N. E.
, and
Vullers
,
R. J. M.
,
2008
, “
Wearable Battery-Free Wireless 2-Channel EEG Systems Powered by Energy Scavengers
,”
Sens. Transducers J.
,
94
, pp.
103
115
.
14.
Torfs
,
T.
,
Leonov
,
V.
, and
Vullers
,
R. J. M.
,
2007
, “
Pulse Oximeter Fully Powered by Human Body Heat
,”
Sens. Transducers J.
,
80
, pp.
1230
1238
.
15.
Leonov
,
V.
,
Torfs
,
T.
,
Hoof
,
C. V.
, and
Vullers
,
R. J. M.
,
2009
, “
Smart Wireless Sensors Integrated in Clothing: An Electrocardiography System in a Shirt Powered Using Human Body Heat
,”
Sens. Transducers J.
,
107
, pp.
165
176
.
16.
Leonov
,
V.
, and
Vullers
,
R. J. M.
,
2007
, “
Thermoelectric Generators on Living Beings
,”
Proceedings of the 5th European Conference on ‘Thermoelectrics (ECT), Odessa, Ukraine
, pp.
47
52
.
17.
Yada
,
A.
,
Pipe
,
K. P.
, and
Shtein
,
M.
,
2008
, “
Fiber-Based Flexible Thermoelectric Power Generator
,”
J. Power Sources
,
175
, pp.
909
913
.10.1016/j.jpowsour.2007.09.096
18.
Yang
,
Y.
,
Wei
,
X. J.
, and
Liu
,
J.
,
2007
, “
Suitability of a Thermoelectric Power Generator for Implantable Medical Electronic Devices
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
5790
5800
.10.1088/0022-3727/40/18/042
19.
Wei
,
X. J.
,
Yang
,
Y.
, and
Liu
,
J.
,
2007
, “
Animal Experiments on Implanted Thermal Electricity Generator
,”
Beijing Biomed. Eng.
,
27
, pp.
276
280
(in Chinese).
20.
Wen
,
H. K.
, and
Hynecek
,
J.
,
1974
, “
Implant Evaluation of a Nuclear Power Source-Batacel Battery
,”
IEEE Trans. Biomed. Eng.
,
21
, pp.
238
241
.10.1109/TBME.1974.324388
21.
Prutchi
,
D.
, “
Nuclear pacemakers
,”
2005
, http://home.comcast.net/dprutchi/nuclear_pacemakers.pdf
22.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Phys.
,
1
, pp.
93
122
.
23.
Deng
,
Z. S.
, and
Liu
,
J.
,
2004
, “
Mathematical Modeling on Temperature Mapping Over Skin Surface and Its Implementation in Disease Diagnostics
,”
Comput. Biol. Med.
,
34
, pp.
495
521
.10.1016/S0010-4825(03)00086-6
24.
Wang
,
X.
,
Gao
,
X.
, and
Liu
,
J.
,
2010
, “
Monte-Carlo Simulation on Gold Nanoshells Enhanced Laser Interstitial Thermal Therapy on Target Tumor
,”
J. Comput. Theor. Nanosci.
,
7
(
6
), pp.
1
7
.10.1166/jctn.2010.1332
25.
Deng
,
Z. S.
, and
Liu
,
J.
,
2006
, “
Numerical Study on the Effects of Large Blood Vessels on 3-D Tissue Temperature Profiles During Cryosurgery
,”
Numer. Heat Transfer, Part A
,
49
, pp.
47
67
.10.1080/10407780500301770
26.
Xiao
,
J.
,
He
,
Z.
,
Yang
,
Y.
,
Chen
,
B. W.
,
Deng
,
Z.
, and
Liu
,
J.
,
2011
, “
Investigation on Three-Dimensional Temperature Field of Human Knee Considering Anatomical Structure
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1851
1860
.10.1016/j.ijheatmasstransfer.2010.11.057
27.
Li
,
Y.
,
2008
, “
Thermal Analysis and Optimum Design on the Semiconductor Thermoelectric Generation Module
,” Master's thesis, Tongji University, Shanghai, (in Chinese).
28.
Rowe
,
D. M.
,
1995
,
CRC Handbook of Thermoelectrics
,
CRC
,
Boca Raton, FL
.
29.
Bai
,
X. D.
, and
Liu
,
J.
,
2005
, “
Study on Heat Transfer and Energy Conversion Efficiency of Radioisotope Fuel Driven Thermoelectric MEMS Power Chip
,”
J. Eng. Thermophys.
,
26
, pp.
826
828
(in Chinese).
30.
Ma
,
Q. F.
,
Fang
,
R. S.
,
Xiang
,
L. C.
, and
Li
,
S.
,
1986
,
Practical Handbook of Thermophysical Properties
,
China Agricultural Machinery Press
,
Beijing
(in Chinese).
33.
Liu
,
J.
, and
Wang
,
C. C.
,
1997
,
Bioheat Transfer
,
Science
,
Beijing
, p.
344
(in Chinese).
34.
Duan
,
Y. Y.
,
Lv
,
F. Q.
,
Wang
,
W.
,
Yuan
,
L. J.
,
Jia
,
H. P.
, and
Liu
,
Y. Y.
,
2003
, “
Analysis of Doppler Flow Spectra of Internal Jugular Vein in Healthy Adults
,”
Chin. J. Ultrasonogr.
,
12
, pp.
724
726
.CNKI:ISSN:1004-4477.0.2003-12-007
35.
Chen
,
J.
,
2008
, “
The Physical Properties of Human Blood Flow
,”
Physics
,
5
, pp.
64
65
.CNKI:SUN:JXWL.0.2008-05-041
36.
Zhang
,
H. J.
,
Tong
,
M. W.
,
Chen
,
L.
, and
Lei
,
H. S.
,
1995
, “
The Principle and Experiment of Transient Line-Source Method for Measuring Thermal Conductivity of Blood
,”
J. Chong Qing Univ.
,
15
, pp.
25
30
.
37.
Rowe
,
D. M.
,
1991
, “
Applications of Nuclear-Powered Thermoelectric Generators in Space
,”
Appl. Energy
,
40
(
4
), pp.
241
271
.10.1016/0306-2619(91)90020-X
38.
Schmidt
,
C. L.
, and
Skarstad
,
P. M.
,
2001
, “
The Future of Lithium and Lithium-Ion Battery in Implantable Medical Devices
,”
J. Power Sources
,
97–98
, pp.
742
746
.10.1016/S0378-7753(01)00648-6
You do not currently have access to this content.