This paper considers the thermal aspects that frequently arise in practical materials processing systems. Important issues such as feasibility, product quality, and production rate have a thermal basis in many cases and are discussed. Complexities such as property variations, complex regions, combined transport mechanisms, chemical reactions, combined heat and mass transfer, and intricate boundary conditions are often encountered in the transport phenomena underlying important practical processes. The basic approaches that may be adopted in order to study such processes are discussed. The link between the basic thermal process and the resulting product is particularly critical in materials processing. The computational difficulties that result from the non-Newtonian behavior of the fluid, free surface flow, moving boundaries, and imposition of appropriate boundary conditions are important in several processes and are discussed. Some of the important techniques that have been developed to treat these problems are presented, along with typical results for a few important processes. Validation of the model is a particularly important aspect and is discussed in terms of existing results, as well as development of experimental arrangements to provide inputs for satisfactory validation. The importance of experimentation and linking the micro/nanoscale transport processes with conditions and systems at the macroscale are discussed. Future trends and research needs, particularly with respect to new materials and new processes, are also outlined.

References

References
1.
Chiu
,
W. K. S.
,
Grigoropoulos
,
C. P.
, and
Li
,
B. Q.
, eds.,
2011
, Special Issue on Advanced Thermal Processing,
ASME J. Heat Transfer
,
133
(
3
).10.1115/1.4002442
2.
Poulikakos
,
D.
, ed.,
1996
, “
Transport Phenomena in Materials Processing
,”
Advances in Heat Transfer
, Vol. 18, Academic Press, San Diego, CA.
3.
Jaluria
,
Y.
,
2003
, “
Thermal Processing of Materials: From Basic Research to Engineering
,”
ASME J. Heat Transfer
,
125
(6), pp.
957
979
.10.1115/1.1621889
4.
Li
,
T.
, ed.,
1985
,
Optical Fiber Communications, Vol. 1: Fiber Fabrication
,
Academic
,
New York
.
5.
Jaluria
,
Y.
, and
Yang
,
J.
,
2011
, “
A Review of Microscale Transport in the Thermal Processing of New and Emerging Advanced Materials
,”
ASME J. Heat Transfer
,
133
(6), p.
060906
.10.1115/1.4003512
6.
Jaluria
,
Y.
,
2008
,
Design and Optimization of Thermal Systems
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
7.
Ghosh
,
A.
, and
Mallik
,
A. K.
,
1986
,
Manufacturing Science
,
Ellis Horwood
,
Chichester, UK
.
8.
Degarmo
,
E. P.
,
Black
,
J. T.
, and
Kohser
,
R. A.
,
1997
,
Materials and Processes in Manufacturing
,
8th ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
9.
Poirier
,
D. R.
, and
Geiger
,
G. H.
,
1998
,
Transport Phenomena in Materials Processing
,
Wiley
,
New York
.
10.
Izawa
,
T.
, and
Sudo
,
S.
,
1987
,
Optical Fibers: Materials and Fabrication
,
KTK Scientific
,
Tokyo
.
11.
Myers
,
M. R.
,
1989
, “
A Model for Unsteady Analysis of Preform Drawing
,”
AIChE J.
,
35
, pp.
592
602
.10.1002/aic.690350409
12.
Fleming
,
J. D.
,
1964
, “
Fused Silica Manual
,”
Final Report for the U. S. Atomic Energy Commission, Oak Ridge, TN, Project B-153.
13.
Tadmor
,
Z.
, and
Gogos
,
C.
,
1979
,
Principles of Polymer Processing
,
Wiley
,
New York
.
14.
Kokini
,
J. L.
,
Ho
,
C.-T.
, and
Karwe
,
M. V.
, eds.,
1992
,
Food Extrusion Science and Technology
,
Marcel Dekker
,
New York
.
15.
Jaluria
,
Y.
,
1996
, “
Heat and Mass Transfer in the Extrusion of Non-Newtonian Materials
,”
Adv. Heat Transfer
,
28
, pp.
145
230
.10.1016/S0065-2717(08)70141-2
16.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1996
, “
Effect of Variable Properties and Viscous Dissipation During Optical Fiber Drawing
,”
ASME J. Heat Transfer
,
118
(2), pp.
350
358
.10.1115/1.2825851
17.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R. L.
, and
Sammakia
,
B.
,
1988
,
Buoyancy-Induced Flows and Transport
,
Taylor and Francis
,
Philadelphia, PA
.
18.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1993
, “
A Comparison of Different Solution Methodologies for Melting and Solidification Problems in Enclosures
,”
Numer. Heat Transfer B
,
24
, pp.
77
105
.10.1080/10407799308955883
19.
Landau
,
H. G.
,
1950
, “
Heat Conduction in a Melting Solid
,”
Appl. Math. Q.
,
8
, pp.
81
94
.
20.
Hughel
,
T. J.
, and
Bolling
,
G. F.
, eds.,
1971
,
Solidification
,
American Society of Metals
,
Metals Park, OH
.
21.
Fenner
,
R. T.
,
1979
,
Principles of Polymer Processing
,
Chemical Publishing
,
New York
.
22.
Shyy
,
W.
,
Udaykumar
,
H. S.
,
Rao
,
M. M.
, and
Smith
,
R. W.
,
1996
,
Computational Fluid Dynamics With Moving Boundaries
,
Taylor and Francis
,
Philadelphia, PA
.
23.
Shyy
,
W.
, and
Narayanan
,
R.
,
1999
,
Fluid Dynamics at Interfaces
,
Cambridge University Press
,
Cambridge, UK
.
24.
Jaluria
,
Y.
, and
Torrance
,
K. E.
,
2003
,
Computational Heat Transfer
,
2nd ed.
,
Taylor and Francis
,
New York
.
25.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
, eds.,
1997
,
Advances in Numerical Heat Transfer
, Vol.
1
,
Taylor and Francis
,
Philadelphia, PA
.
26.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Murthy
,
J.
, eds.,
2006
,
Handbook of Numerical Heat Transfer
,
Wiley
,
New York
.
27.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
28.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
29.
Esseghir
,
M.
, and
Sernas
,
V.
,
1992
, “
Experiments on a Single Screw Extruder With a Deep and Highly Curved Screw Channel
,”
Food Extrusion Science and Technology
,
J. L.
Kokini
,
C. T.
Ho
, and
M. V.
Karwe
, eds.,
Marcel Dekker
,
New York
, pp.
21
40
.
30.
Esseghir
,
M.
, and
Sernas
,
V.
,
1991
, “
A Cam-Driven Probe for Measurement of the Temperature Distribution in an Extruder Channel
,”
SPE ANTEC Tech. Papers
,
37
, pp.
54
57
.
31.
Sastrohartono
,
T.
,
Esseghir
,
M.
,
Kwon
,
T. H.
, and
Sernas
,
V.
,
1990
, “
Numerical and Experimental Studies of the Flow in the Nip Region of a Partially Intermeshing Co-Rotating Twin Screw Extruder
,”
Polymer Eng. Sci.
,
30
, pp.
1382
1398
.10.1002/pen.760302108
32.
Eversteyn
,
F. C.
,
Severin
,
P. J. W.
,
Brekel
,
C. H. J.
, and
Peek
,
H. L.
,
1970
, “
A Stagnant Layer Model for the Epitaxial Growth of Silicon From Silane in a Horizontal Reactor
,”
J. Electrochem. Soc.
,
117
, pp.
925
931
.10.1149/1.2407685
33.
Mahajan
,
R. L.
, and
Wei
,
C.
,
1991
, “
Buoyancy, Soret, Dufour and Variable Property Effects in Silicon Epitaxy
,”
ASME J. Heat Transfer
,
113
(3), pp.
688
695
.10.1115/1.2910619
34.
Yoo
,
H.
, and
Jaluria
,
Y.
,
2002
, “
Thermal Aspects in the Continuous Chemical Vapor Deposition of Silicon
,”
ASME J. Heat Transfer
,
124
(5), pp.
938
946
.10.1115/1.1482084
35.
George
,
P.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2006
, “
Optimization of the Chemical Vapor Deposition Process for the Fabrication of Thin Films
,”
13th International Heat Transfer Conference
(IHTC)
,
Sydney, Australia
.10.1615/IHTC13.p11.60
36.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2009
, “
Parametric Modeling and Optimization of Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
131
(1), p.
011011
.10.1115/1.3063689
37.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1995
, “
Numerical Study of Conjugate Transient Solidification in an Enclosed Region
,”
Numer. Heat Transfer
,
27
, pp.
519
536
.10.1080/10407789508913716
38.
Wolff
,
F.
, and
Viskanta
,
R.
,
1987
, “
Melting of a Pure Metal From a Vertical Wall
,”
Exp. Heat Transfer
,
1
, pp.
17
30
.10.1080/08916158708946328
39.
Ravinutala
,
S.
, and
Polymeropoulos
,
C. E.
,
2002
, “
Entrance Meniscus in a Pressurized Optical Fiber Coating Applicator
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
573
580
.10.1016/S0894-1777(02)00168-1
40.
Ravinutala
,
S.
,
Rattan
,
K.
,
Polymeropoulos
,
C.
, and
Jaluria
,
Y.
,
2000
, “
Dynamic Menisci in a Pressurized Fiber Applicator
,”
Proc. 49th International Wire Cable Symposium
,
Atlantic City, NJ
.
41.
Yoo
,
S. Y.
, and
Jaluria
,
Y.
,
2007
, “
Numerical Simulation of the Meniscus in Non-Isothermal Free Surface Flow at the Exit of a Coating Die
,”
Numer. Heat Transfer A
,
53
, pp.
111
131
.10.1080/10407780701454089
42.
Blyler
,
L. L.
, and
DiMarcello
,
F. V.
,
1980
, “
Fiber Drawing, Coating and Jacketing
,”
Proc. IEEE
,
68
, pp.
1194
1198
.10.1109/PROC.1980.11830
43.
Paek
,
U. C.
,
1986
, “
High-Speed High-Strength Fiber Coating
,”
J. Lightwave Tech.
,
4
, pp.
1048
1060
.10.1109/JLT.1986.1074848
44.
Paek
,
U. C.
,
1999
, “
Free Drawing and Polymer Coating of Silica Glass Optical Fibers
,”
ASME J. Heat Transfer
,
121
(4), pp.
774
788
.10.1115/1.2826066
45.
Jaluria
,
Y.
,
2009
, “
Microscale Transport Phenomena in Materials Processing
,”
ASME J. Heat Transfer
,
131
(3),
p. 033111
.10.1115/1.3056576
46.
Hanafusa
,
H.
,
Hibino
,
Y.
, and
Yamamoto
,
F.
,
1985
, “
Formation Mechanism of Drawing-Induced E′ Centers in Silica Optical Fibers
,”
J. Appl. Phys.
,
58
(
3
), pp.
1356
1361
.10.1063/1.336107
47.
Chen
,
C.
, and
Jaluria
,
Y.
,
2009
, “
Effects of Doping on the Optical Fiber Drawing Process
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4812
4822
.10.1016/j.ijheatmasstransfer.2009.05.021
48.
Ozisik
,
M. N.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor and Francis
,
Philadelphia, PA
.
49.
Orlande
,
H. R. B.
,
2012
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME J. Heat Transfer
,
134
(3), p.
031011
.10.1115/1.4005131
50.
Issa
,
J.
,
Yin
,
Z.
,
Polymeropoulos
,
C. E.
, and
Jaluria
,
Y.
,
1996
, “
Temperature Distribution in an Optical Fiber Draw Tower Furnace
,”
J. Mater. Proc. Manuf. Sci.
,
4
, pp.
221
232
.
51.
Fitt
,
A. D.
,
Furusawa
,
K.
,
Monro
,
T. M.
, and
Please
,
C. P.
,
2001
, “
Modeling the Fabrication of Hollow Fibers: Capillary Drawing
,”
J. Lightwave Technol.
,
19
, pp.
1924
1931
.10.1109/50.971686
52.
Yang
,
J.
, and
Jaluria
,
Y.
,
2009
, “
Feasibility and Optimization of the Hollow Optical Fiber Drawing Process
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4108
4116
.10.1016/j.ijheatmasstransfer.2009.03.033
53.
Chiu
,
W. K. S.
,
Jaluria
,
Y.
, and
Glumac
,
N. G.
,
2002
, “
Control of Thin Film Growth in Chemical Vapor Deposition Manufacturing Systems: A Feasibility Study
,”
ASME J. Manuf. Sci. Eng.
,
124
(3), pp.
715
724
.10.1115/1.1465434
54.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2010
, “
Systematic Strategy for Modeling and Optimization of Thermal Systems With Design Uncertainties
,”
Frontiers Heat Mass Transfer
,
1
, p.
013003
.10.5098/hmt.v1.1.3003
55.
Miettinen
,
K. M.
,
1999
,
Nonlinear Multi-Objective Optimization
,
Kluwer Academic
,
Boston, MA
.
56.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
57.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2002
,
Response Surface Methodology, Process and Product Optimization Using Designed Experiments
,
2nd ed.
,
Wiley
,
New York
.
58.
Jaluria
,
Y.
,
2001
, “
Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
123
(2), pp.
173
210
.10.1115/1.1350563
You do not currently have access to this content.