Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand throughout the world for energy consumption and CO2 reduction, thermoelectric energy conversion has been receiving intensified attention as a potential candidate for waste-heat harvesting as well as for power generation from renewable sources. Efficient thermoelectric energy conversion critically depends on the performance of thermoelectric materials and devices. In this review, we discuss heat transfer in thermoelectric materials and devices, especially phonon engineering to reduce the lattice thermal conductivity of thermoelectric materials, which requires a fundamental understanding of nanoscale heat conduction physics.

References

References
1.
Goldsmid
,
H. J.
,
2010
,
Introduction to Thermoelectricity
,
Springer
,
New York
.
2.
Sootsman
,
J. R.
,
Chung
,
D. Y.
, and
Kanatzidis
,
M. G.
,
2009
, “
New and Old Concepts in Thermoelectric Materials
,”
Angew. Chem., Int. Ed.
,
48
(
46
), pp.
8616
8639
.10.1002/anie.200900598
3.
Slack
,
G. A.
,
1995
, “
New Materials and Performance Limits for Thermoelectric Cooling
,”
CRC Handbook of Thermoelectrics
,
D. M.
Rowe
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
407
440
.
4.
Mahan
,
G. D.
, and
Sofo
,
J. O.
,
1996
, “
The Best Thermoelectric
,”
Proc. Natl. Acad. Sci. USA
,
93
(
15
), pp.
7436
7439
.10.1073/pnas.93.15.7436
5.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
47
(
19
), pp.
12727
12731
.10.1103/PhysRevB.47.12727
6.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Thermoelectric Figure of Merit of a One-Dimensional Conductor
,”
Phys. Rev. B
,
47
(
24
), pp.
16631
16634
.10.1103/PhysRevB.47.16631
7.
Chen
,
G.
,
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Fleurial
,
J. P.
, and
Caillat
,
T.
,
2003
, “
Recent Developments in Thermoelectric Materials
,”
Int. Mater. Rev.
,
48
(
1
), pp.
45
66
.10.1179/095066003225010182
8.
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2009
, “
Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects
,”
Energy Environ. Sci.
,
2
(
5
), pp.
466
479
.10.1039/b822664b
9.
Lan
,
Y. C.
,
Minnich
,
A. J.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2010
, “
Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach
,”
Adv. Funct. Mater.
,
20
(
3
), pp.
357
376
.10.1002/adfm.200901512
10.
Zebarjadi
,
M.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2012
, “
Perspectives on Thermoelectrics: From Fundamentals to Device Applications
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5147
5162
.10.1039/c1ee02497c
11.
Wood
,
C.
,
1988
, “
Materials for Thermoelectric Energy Conversion
,”
Rep. Prog. Phys.
,
51
(
4
), pp.
459
539
.10.1088/0034-4885/51/4/001
12.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nature Mater.
,
7
(
2
), pp.
105
114
.10.1038/nmat2090
13.
Dresselhaus
,
M. S.
,
Chen
,
G.
,
Tang
,
M. Y.
,
Yang
,
R. G.
,
Lee
,
H.
,
Wang
,
D. Z.
,
Ren
,
Z. F.
,
Fleurial
,
J. P.
, and
Gogna
,
P.
,
2007
, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Mater.
,
19
(
8
), pp.
1043
1053
.10.1002/adma.200600527
14.
Vineis
,
C. J.
,
Shakouri
,
A.
,
Majumdar
,
A.
, and
Kanatzidis
,
M. G.
,
2010
, “
Nanostructured Thermoelectrics: Big Efficiency Gains From Small Features
,”
Adv. Mater.
,
22
(
36
), pp.
3970
3980
.10.1002/adma.201000839
15.
Disalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
(
5428
), pp.
703
706
.10.1126/science.285.5428.703
16.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.10.1126/science.1158899
17.
Chen
,
G.
, and
Shakouri
,
A.
,
2002
, “
Heat Transfer in Nanostructures for Solid-State Energy Conversion
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
242
252
.10.1115/1.1448331
18.
Rowe
,
D. M.
,
1995
,
CRC Handbook of Thermoelectrics
,
CRC Press
,
Boca Raton, FL
.
19.
Rowe
,
D. M.
,
2006
,
Thermoelectrics Handbook: Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
20.
Tritt
,
T. M.
,
2001
,
Recent Trends in Thermoelectric Materials Research, Semiconductors and Semimetals
,
Academic Press
,
San Diego, CA
.
21.
Chen
,
G.
,
2006
, “
Nanoscale Heat Transfer and Nanostructured Thermoelectrics
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
238
246
.10.1109/TCAPT.2006.875895
22.
Tritt
,
T. M.
, and
Subramanian
,
M. A.
,
2006
, “
Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
,”
MRS Bull.
,
31
(
3
), pp.
188
194
.10.1557/mrs2006.44
23.
Goldsmid
,
H. J.
, and
Douglas
,
R. W.
,
1954
, “
The Use of Semiconductors in Thermoelectric Refrigeration
,”
Br. J. Appl. Phys.
,
5
, pp.
386
390
.10.1088/0508-3443/5/11/303
24.
Ioffe
,
A. F.
,
1957
,
Semiconductor Thermoelements and Thermo-Electric Cooling
,
Infosearch Ltd.
,
London
.
25.
Steele
,
M. C.
, and
Rosi
,
F. D.
,
1958
, “
Thermal Conductivity and Thermoelectric Power of Germanium-Silicon Alloys
,”
J. Appl. Phys.
,
29
(
11
), pp.
1517
1520
.10.1063/1.1722984
26.
Ioffe
,
A. F.
,
Airapetiants
,
S. V.
,
Ioffe
,
A. V.
,
Kolomoetz
,
N. V.
, and
Stilbans
,
L. S.
,
1956
, “
Increasing the Efficiency of Semiconductor Thermocouples
,”
Dokl. Akad. Nauk SSSR
,
106
(
6
), p.
981
.
27.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O'Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
(
6856
), pp.
597
602
.10.1038/35098012
28.
Shakouri
,
A.
, and
Bowers
,
J. E.
,
1997
, “
Heterostructure Integrated Thermionic Coolers
,”
Appl. Phys. Lett.
,
71
(
9
), pp.
1234
1236
.10.1063/1.119861
29.
Zhang
,
Q.
,
Cao
,
F.
,
Liu
,
W. S.
,
Lukas
,
K.
,
Yu
,
B.
,
Chen
,
S.
,
Opeil
,
C.
,
Broido
,
D.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2012
, “
Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1−ySey
,”
J. Am. Chem. Soc.
,
134
(
24
), pp.
10031
10038
.10.1021/ja301245b
30.
Pei
,
Y. Z.
,
Shi
,
X. Y.
,
Lalonde
,
A.
,
Wang
,
H.
,
Chen
,
L. D.
, and
Snyder
,
G. J.
,
2011
, “
Convergence of Electronic Bands for High Performance Bulk Thermoelectrics
,”
Nature
,
473
(
7345
), pp.
66
69
.10.1038/nature09996
31.
Biswas
,
K.
,
He
,
J.
,
Blum
,
I. D.
,
Wu
,
C.-I.
,
Hogan
,
T. P.
,
Seidman
,
D. N.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2012
, “
High-Performance Bulk Thermoelectrics With All-Scale Hierarchical Architectures
,”
Nature
,
489
, pp.
414
418
.10.1038/nature11439
32.
Wang
,
X. W.
,
Lee
,
H.
,
Lan
,
Y. C.
,
Zhu
,
G. H.
,
Joshi
,
G.
,
Wang
,
D. Z.
,
Yang
,
J.
,
Muto
,
A. J.
,
Tang
,
M. Y.
,
Klatsky
,
J.
,
Song
,
S.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2008
, “
Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy
,”
Appl. Phys. Lett.
,
93
(
19
), p.
193121
.10.1063/1.3027060
33.
Joshi
,
G.
,
Lee
,
H.
,
Lan
,
Y. C.
,
Wang
,
X. W.
,
Zhu
,
G. H.
,
Wang
,
D. Z.
,
Gould
,
R. W.
,
Cuff
,
D. C.
,
Tang
,
M. Y.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2008
, “
Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys
,”
Nano Lett.
,
8
(
12
), pp.
4670
4674
.10.1021/nl8026795
34.
Uher
,
C.
,
2001
, “
Skutterudites: Prospective Novel Thermoelectrics
,”
Semicond. Semimetals
,
69
, pp.
139
253
.10.1016/S0080-8784(01)80151-4
35.
Nolas
,
G. S.
,
Slack
,
G. A.
,
Morelli
,
D. T.
,
Tritt
,
T. M.
, and
Ehrlich
,
A. C.
,
1996
, “
The Effect of Rare-Earth Filling on the Lattice Thermal Conductivity of Skutterudites
,”
J. Appl. Phys.
,
79
(
8
), pp.
4002
4008
.10.1063/1.361828
36.
Sales
,
B. C.
,
Mandrus
,
D.
, and
Williams
,
R. K.
,
1996
, “
Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials
,”
Science
,
272
(
5266
), pp.
1325
1328
.10.1126/science.272.5266.1325
37.
Morelli
,
D. T.
,
Meisner
,
G. P.
,
Chen
,
B. X.
,
Hu
,
S. Q.
, and
Uher
,
C.
,
1997
, “
Cerium Filling and Doping of Cobalt Triantimonide
,”
Phys. Rev. B
,
56
(
12
), pp.
7376
7383
.10.1103/PhysRevB.56.7376
38.
Shi
,
X.
,
Kong
,
H.
,
Li
,
C. P.
,
Uher
,
C.
,
Yang
,
J.
,
Salvador
,
J. R.
,
Wang
,
H.
,
Chen
,
L.
, and
Zhang
,
W.
,
2008
, “
Low Thermal Conductivity and High Thermoelectric Figure of Merit in n-Type BaxYbyCo4Sb12 Double-Filled Skutterudites
,”
Appl. Phys. Lett.
,
92
(
18
), p.
182101
.10.1063/1.2920210
39.
Shi
,
X.
,
Yang
,
J.
,
Salvador
,
J. R.
,
Chi
,
M. F.
,
Cho
,
J. Y.
,
Wang
,
H.
,
Bai
,
S. Q.
,
Yang
,
J. H.
,
Zhang
,
W. Q.
, and
Chen
,
L. D.
,
2011
, “
Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit Through Separately Optimizing Electrical and Thermal Transports
,”
J. Am. Chem. Soc.
,
133
(
20
), pp.
7837
7846
.10.1021/ja111199y
40.
Jie
,
Q.
,
Wang
,
H.
,
Liu
,
W.
,
Wang
,
H.
,
Chen
,
G.
, and
Ren
,
Z.
, “
Fast Phase Formation of Double-Filled p-Type Skutterudites by Ball-Milling and Hot-Pressing
,”
Phys. Chem. Chem. Phys.
(accepted).10.1039/C3CP50327E
41.
Saramat
,
A.
,
Svensson
,
G.
,
Palmqvist
,
A. E. C.
,
Stiewe
,
C.
,
Mueller
,
E.
,
Platzek
,
D.
,
Williams
,
S. G. K.
,
Rowe
,
D. M.
,
Bryan
,
J. D.
, and
Stucky
,
G. D.
,
2006
, “
Large Thermoelectric Figure of Merit at High Temperature in Czochralski-Grown Clathrate Ba8Ga16Ge30
,”
J. Appl. Phys.
,
99
(
2
), p.
023708
.10.1063/1.2163979
42.
Deng
,
S. K.
,
Tang
,
X. F.
,
Li
,
P.
, and
Zhang
,
Q. J.
,
2008
, “
High Temperature Thermoelectric Transport Properties of p-Type Ba8Ga16AlxGe30−x Type-I Clathrates With High Performance
,”
J. Appl. Phys.
,
103
(
7
), p.
073503
.10.1063/1.2902504
43.
Caillat
,
T.
,
Fleurial
,
J. P.
, and
Borshchevsky
,
A.
,
1997
, “
Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3
,”
J. Phys. Chem. Solids
,
58
(
7
), pp.
1119
1125
.10.1016/S0022-3697(96)00228-4
44.
Brown
,
S. R.
,
Kauzlarich
,
S. M.
,
Gascoin
,
F.
, and
Snyder
,
G. J.
,
2006
, “
Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation
,”
Chem. Mater.
,
18
(
7
), pp.
1873
1877
.10.1021/cm060261t
45.
Wolfing
,
B.
,
Kloc
,
C.
,
Teubner
,
J.
, and
Bucher
,
E.
,
2001
, “
High Performance Thermoelectric Tl9BiTe6 With an Extremely Low Thermal Conductivity
,”
Phys. Rev. Lett.
,
86
(
19
), pp.
4350
4353
.10.1103/PhysRevLett.86.4350
46.
Kurosaki
,
K.
,
Kosuga
,
A.
,
Muta
,
H.
, and
Yamanaka
,
S.
,
2005
, “
Thermoelectric Properties of Thallium Compounds With Extremely Low Thermal Conductivity
,”
Mater. Trans.
,
46
(
7
), pp.
1502
1505
.10.2320/matertrans.46.1502
47.
Uher
,
C.
,
Yang
,
J.
,
Hu
,
S.
,
Morelli
,
D. T.
, and
Meisner
,
G. P.
,
1999
, “
Transport Properties of Pure and Doped MNiSn (M = Zr, Hf)
,”
Phys. Rev. B
,
59
(
13
), pp.
8615
8621
.10.1103/PhysRevB.59.8615
48.
Yan
,
X. A.
,
Joshi
,
G.
,
Liu
,
W. S.
,
Lan
,
Y. C.
,
Wang
,
H.
,
Lee
,
S.
,
Simonson
,
J. W.
,
Poon
,
S. J.
,
Tritt
,
T. M.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2011
, “
Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers
,”
Nano Lett.
,
11
(
2
), pp.
556
560
.10.1021/nl104138t
49.
Joshi
,
G.
,
Yan
,
X.
,
Wang
,
H. Z.
,
Liu
,
W. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2011
, “
Enhancement in Thermoelectric Figure-of-Merit of an N-Type Half-Heusler Compound by the Nanocomposite Approach
,”
Adv. Energy Mater.
,
1
(
4
), pp.
643
647
.10.1002/aenm.201100126
50.
Yan
,
X.
,
Liu
,
W. S.
,
Wang
,
H.
,
Chen
,
S.
,
Shiomi
,
J.
,
Esfarjani
,
K.
,
Wang
,
H. Z.
,
Wang
,
D. Z.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2012
, “
Stronger Phonon Scattering by Larger Differences in Atomic Mass and Size in p-Type Half-Heuslers Hf1−xTixCoSb0.8Sn0.2
,”
Energy Environ. Sci.
,
5
(
6
), pp.
7543
7548
.10.1039/c2ee21554c
51.
Terasaki
,
I.
,
Sasago
,
Y.
, and
Uchinokura
,
K.
,
1997
, “
Large Thermoelectric Power in NaCo2O4 Single Crystals
,”
Phys. Rev. B
,
56
(
20
), pp.
12685
12687
.10.1103/PhysRevB.56.R12685
52.
Funahashi
,
R.
,
Matsubara
,
I.
,
Ikuta
,
H.
,
Takeuchi
,
T.
,
Mizutani
,
U.
, and
Sodeoka
,
S.
,
2000
, “
An Oxide Single Crystal With High Thermoelectric Performance in Air
,”
Jpn. J. Appl. Phys.
, Part 2,
39
(
11B
), pp.
L1127
L1129
.10.1143/JJAP.39.L1127
53.
Funahashi
,
R.
,
Matsubara
,
I.
, and
Sodeoka
,
S.
,
2000
, “
Thermoelectric Properties of Bi2Sr2Co2Ox Polycrystalline Materials
,”
Appl. Phys. Lett.
,
76
(
17
), pp.
2385
2387
.10.1063/1.126354
54.
Ohta
,
S.
,
Nomura
,
T.
,
Ohta
,
H.
, and
Koumoto
,
K.
,
2005
, “
High-Temperature Carrier Transport and Thermoelectric Properties of Heavily La- or Nb-Doped SrTiO3 Single Crystals
,”
J. Appl. Phys.
,
97
(
3
), p.
034106
.10.1063/1.1847723
55.
Flahaut
,
D.
,
Mihara
,
T.
,
Funahashi
,
R.
,
Nabeshima
,
N.
,
Lee
,
K.
,
Ohta
,
H.
, and
Koumoto
,
K.
,
2006
, “
Thermoelectrical Properties of A-Site Substituted Ca1−xRexMnO3 System
,”
J. Appl. Phys.
,
100
(
8
), p.
084911
.10.1063/1.2362922
56.
Muta
,
H.
,
Kurosaki
,
K.
, and
Yamanaka
,
S.
,
2003
, “
Thermoelectric Properties of Rare Earth Doped SrTiO3
,”
J. Alloys Compd.
,
350
(
1–2
), pp.
292
295
.10.1016/S0925-8388(02)00972-6
57.
Zhou
,
J.
,
Yang
,
R. G.
,
Chen
,
G.
, and
Dresselhaus
,
M. S.
,
2011
, “
Optimal Bandwidth for High Efficiency Thermoelectrics
,”
Phys. Rev. Lett.
,
107
(
22
), p.
226601
.10.1103/PhysRevLett.107.226601
58.
Jeong
,
C.
,
Kim
,
R.
, and
Lundstrom
,
M. S.
,
2012
, “
On the Best Bandstructure for Thermoelectric Performance: A Landauer Perspective
,”
J. Appl. Phys.
,
111
(
11
), p.
113707
.10.1063/1.4727855
59.
Heremans
,
J. P.
,
Jovovic
,
V.
,
Toberer
,
E. S.
,
Saramat
,
A.
,
Kurosaki
,
K.
,
Charoenphakdee
,
A.
,
Yamanaka
,
S.
, and
Snyder
,
G. J.
,
2008
, “
Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
,”
Science
,
321
(
5888
), pp.
554
557
.10.1126/science.1159725
60.
Zhang
,
Q. Y.
,
Wang
,
H.
,
Liu
,
W. S.
,
Wang
,
H. Z.
,
Yu
,
B.
,
Zhang
,
Q.
,
Tian
,
Z. T.
,
Ni
,
G.
,
Lee
,
S.
,
Esfarjani
,
K.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2012
, “
Enhancement of Thermoelectric Figure-of-Merit by Resonant States of Aluminium Doping in Lead Selenide
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5246
5251
.10.1039/c1ee02465e
61.
Heremans
,
J. P.
,
Thrush
,
C. M.
, and
Morelli
,
D. T.
,
2004
, “
Thermopower Enhancement in Lead Telluride Nanostructures
,”
Phys. Rev. B
,
70
(
11
), p.
115334
.10.1103/PhysRevB.70.115334
62.
Zide
,
J. M. O.
,
Vashaee
,
D.
,
Bian
,
Z. X.
,
Zeng
,
G.
,
Bowers
,
J. E.
,
Shakouri
,
A.
, and
Gossard
,
A. C.
,
2006
, “
Demonstration of Electron Filtering to Increase the Seebeck Coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As Superlattices
,”
Phys. Rev. B
,
74
(
20
), p.
205335
.10.1103/PhysRevB.74.205335
63.
Zebarjadi
,
M.
,
Joshi
,
G.
,
Zhu
,
G. H.
,
Yu
,
B.
,
Minnich
,
A.
,
Lan
,
Y. C.
,
Wang
,
X. W.
,
Dresselhaus
,
M.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2011
, “
Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites
,”
Nano Lett.
,
11
(
6
), pp.
2225
2230
.10.1021/nl201206d
64.
Koga
,
T.
,
Sun
,
X.
,
Cronin
,
S. B.
, and
Dresselhaus
,
M. S.
,
1998
, “
Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices
,”
Appl. Phys. Lett.
,
73
(
20
), pp.
2950
2952
.10.1063/1.122640
65.
Zebarjadi
,
M.
,
Liao
,
B.
,
Esfarjani
,
K.
,
Dresselhaus
,
M.
, and
Chen
,
G.
,
2013
, “
Enhancing the Thermoelectric Power Factor by Using Invisible Dopants
,”
Adv. Mater.
,
25
(
11
), pp. 1577–1582.10.1002/adma.201204802
66.
Chen
,
G.
,
Tien
,
C. L.
,
Wu
,
X.
, and
Smith
,
J. S.
,
1994
, “
Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
325
331
.10.1115/1.2911404
67.
Chen
,
G.
,
2001
, “
Phonon Transport in Low-Dimensional Structures
,”
Semicond. Semimetals
,
71
, pp.
203
259
.10.1016/S0080-8784(01)80130-7
68.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
Laforge
,
B. E.
,
2002
, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
,
297
(
5590
), pp.
2229
2232
.10.1126/science.1072886
69.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
(
22
), pp.
2957
2959
.10.1063/1.118755
70.
Liu
,
W. L.
,
Borca-Tasciuc
,
T.
,
Chen
,
G.
,
Liu
,
J. L.
, and
Wang
,
K. L.
,
2001
, “
Anisotropic Thermal Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices
,”
J. Nanosci. Nanotechnol.
,
1
(
1
), pp.
39
42
.10.1166/jnn.2001.013
71.
Borca-Tasciuc
,
T.
,
Liu
,
W. L.
,
Liu
,
J. L.
,
Zeng
,
T. F.
,
Song
,
D. W.
,
Moore
,
C. D.
,
Chen
,
G.
,
Wang
,
K. L.
,
Goorsky
,
M. S.
,
Radetic
,
T.
,
Gronsky
,
R.
,
Koga
,
T.
, and
Dresselhaus
,
M. S.
,
2000
, “
Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices
,”
Superlattices Microstruct.
,
28
(
3
), pp.
199
206
.10.1006/spmi.2000.0900
72.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-And-Probe Technique
,”
Phys. Rev. B
,
59
(
12
), pp.
8105
8113
.10.1103/PhysRevB.59.8105
73.
Caylor
,
J. C.
,
Coonley
,
K.
,
Stuart
,
J.
,
Colpitts
,
T.
, and
Venkatasubramanian
,
R.
,
2005
, “
Enhanced Thermoelectric Performance in PbTe-Based Superlattice Structures From Reduction of Lattice Thermal Conductivity
,”
Appl. Phys. Lett.
,
87
(
2
), p.
023105
.10.1063/1.1992662
74.
Heremans
,
J.
,
Thrush
,
C. M.
,
Lin
,
Y. M.
,
Cronin
,
S.
,
Zhang
,
Z.
,
Dresselhaus
,
M. S.
, and
Mansfield
,
J. F.
,
2000
, “
Bismuth Nanowire Arrays: Synthesis and Galvanomagnetic Properties
,”
Phys. Rev. B
,
61
(
4
), pp.
2921
2930
.10.1103/PhysRevB.61.2921
75.
Guthy
,
C.
,
Nam
,
C. Y.
, and
Fischer
,
J. E.
,
2008
, “
Unusually Low Thermal Conductivity of Gallium Nitride Nanowires
,”
J. Appl. Phys.
,
103
(
6
), p.
064319
.10.1063/1.2894907
76.
Harris
,
C. T.
,
Martinez
,
J. A.
,
Shaner
,
E. A.
,
Huang
,
J. Y.
,
Swartzentruber
,
B. S.
,
Sullivan
,
J. P.
, and
Chen
,
G.
,
2011
, “
Fabrication of a Nanostructure Thermal Property Measurement Platform
,”
Nanotechnology
,
22
(
27
), p.
275308
.10.1088/0957-4484/22/27/275308
77.
Zhou
,
J. H.
,
Jin
,
C. G.
,
Seol
,
J. H.
,
Li
,
X. G.
, and
Shi
,
L.
,
2005
, “
Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires
,”
Appl. Phys. Lett.
,
87
(
13
), p.
133109
.10.1063/1.2058217
78.
Zhou
,
F.
,
Moore
,
A. L.
,
Pettes
,
M. T.
,
Lee
,
Y.
,
Seol
,
J. H.
,
Ye
,
Q. L.
,
Rabenberg
,
L.
, and
Shi
,
L.
,
2010
, “
Effect of Growth Base Pressure on the Thermoelectric Properties of Indium Antimonide Nanowires
,”
J. Phys. D: Appl. Phys.
,
43
(
2
), p.
025406
.10.1088/0022-3727/43/2/025406
79.
Zhou
,
F.
,
Moore
,
A. L.
,
Bolinsson
,
J.
,
Persson
,
A.
,
Froberg
,
L.
,
Pettes
,
M. T.
,
Kong
,
H. J.
,
Rabenberg
,
L.
,
Caroff
,
P.
,
Stewart
,
D. A.
,
Mingo
,
N.
,
Dick
,
K. A.
,
Samuelson
,
L.
,
Linke
,
H.
, and
Shi
,
L.
,
2011
, “
Thermal Conductivity of Indium Arsenide Nanowires With Wurtzite and Zinc Blende Phases
,”
Phys. Rev. B
,
83
(
20
), p.
205416
.10.1103/PhysRevB.83.205416
80.
Moore
,
A. L.
,
Pettes
,
M. T.
,
Zhou
,
F.
, and
Shi
,
L.
,
2009
, “
Thermal Conductivity Suppression in Bismuth Nanowires
,”
J. Appl. Phys.
,
106
(
3
), p.
034310
.10.1063/1.3191657
81.
Hochbaum
,
A. I.
,
Chen
,
R. K.
,
Delgado
,
R. D.
,
Liang
,
W. J.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P. D.
,
2008
, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature
,
451
(
7175
), pp.
163
167
.10.1038/nature06381
82.
Boukai
,
A. I.
,
Bunimovich
,
Y.
,
Tahir-Kheli
,
J.
,
Yu
,
J. K.
,
Goddard
,
W. A.
, and
Heath
,
J. R.
,
2008
, “
Silicon Nanowires as Efficient Thermoelectric Materials
,”
Nature
,
451
(
7175
), pp.
168
171
.10.1038/nature06458
83.
Wingert
,
M. C.
,
Chen
,
Z. C. Y.
,
Dechaumphai
,
E.
,
Moon
,
J.
,
Kim
,
J. H.
,
Xiang
,
J.
, and
Chen
,
R. K.
,
2011
, “
Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime
,”
Nano Lett.
,
11
(
12
), pp.
5507
5513
.10.1021/nl203356h
84.
Lee
,
E. K.
,
Yin
,
L.
,
Lee
,
Y.
,
Lee
,
J. W.
,
Lee
,
S. J.
,
Lee
,
J.
,
Cha
,
S. N.
,
Whang
,
D.
,
Hwang
,
G. S.
,
Hippalgaonkar
,
K.
,
Majumdar
,
A.
,
Yu
,
C.
,
Choi
,
B. L.
,
Kim
,
J. M.
, and
Kim
,
K.
,
2012
, “
Large Thermoelectric Figure-of-Merits From SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties
,”
Nano Lett.
,
12
(
6
), pp.
2918
2923
.10.1021/nl300587u
85.
Zhao
,
X. B.
,
Ji
,
X. H.
,
Zhang
,
Y. H.
,
Zhu
,
T. J.
,
Tu
,
J. P.
, and
Zhang
,
X. B.
,
2005
, “
Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites
,”
Appl. Phys. Lett.
,
86
(
6
), p.
062111
.10.1063/1.1863440
86.
Yang
,
R.
, and
Chen
,
G.
,
2004
, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
,
69
(
19
), p.
195316
.10.1103/PhysRevB.69.195316
87.
Lan
,
Y. C.
,
Poudel
,
B.
,
Ma
,
Y.
,
Wang
,
D. Z.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2009
, “
Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride
,”
Nano Lett.
,
9
(
4
), pp.
1419
1422
.10.1021/nl803235n
88.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y. C.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X. A.
,
Wang
,
D. Z.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X. Y.
,
Liu
,
J. M.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.10.1126/science.1156446
89.
Ma
,
Y.
,
Hao
,
Q.
,
Poudel
,
B.
,
Lan
,
Y. C.
,
Yu
,
B.
,
Wang
,
D. Z.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2008
, “
Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made From Elemental Chunks
,”
Nano Lett.
,
8
(
8
), pp.
2580
2584
.10.1021/nl8009928
90.
Girard
,
S. N.
,
He
,
J. Q.
,
Zhou
,
X. Y.
,
Shoemaker
,
D.
,
Jaworski
,
C. M.
,
Uher
,
C.
,
Dravid
,
V. P.
,
Heremans
,
J. P.
, and
Kanatzidis
,
M. G.
,
2011
, “
High Performance Na-Doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures
,”
J. Am. Chem. Soc.
,
133
(
41
), pp.
16588
16597
.10.1021/ja206380h
91.
Poudeu
,
P. F. P.
,
D'Angelo
,
J.
,
Downey
,
A. D.
,
Short
,
J. L.
,
Hogan
,
T. P.
, and
Kanatzidis
,
M. G.
,
2006
, “
High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-Type Na1−xPbmSbyTem+2
,”
Angew. Chem., Int. Ed.
,
45
(
23
), pp.
3835
3839
.10.1002/anie.200600865
92.
Kim
,
W.
,
Zide
,
J.
,
Gossard
,
A.
,
Klenov
,
D.
,
Stemmer
,
S.
,
Shakouri
,
A.
, and
Majumdar
,
A.
,
2006
, “
Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
,”
Phys. Rev. Lett.
,
96
(
4
), p.
045901
.10.1103/PhysRevLett.96.045901
93.
Ge
,
Z. H.
,
Zhang
,
B. P.
,
Liu
,
Y.
, and
Li
,
J. F.
,
2012
, “
Nanostructured Bi2−xCuxS3 Bulk Materials With Enhanced Thermoelectric Performance
,”
Phys. Chem. Chem. Phys.
,
14
(
13
), pp.
4475
4481
.10.1039/c2cp23955h
94.
Li
,
H.
,
Tang
,
X.
,
Zhang
,
Q.
, and
Uher
,
C.
,
2008
, “
Rapid Preparation Method of Bulk Nanostructured Yb0.3Co4Sb12+y Compounds and Their Improved Thermoelectric Performance
,”
Appl. Phys. Lett.
,
93
(
25
), p.
252109
.10.1063/1.3054158
95.
Li
,
H.
,
Tang
,
X.
,
Zhang
,
Q.
, and
Uher
,
C.
,
2009
, “
High Performance InxCeyCo4Sb12 Thermoelectric Materials With in situ Forming Nanostructured InSb Phase
,”
Appl. Phys. Lett.
,
94
(
10
), p.
102114
.10.1063/1.3099804
96.
Yan
,
X.
,
Poudel
,
B.
,
Ma
,
Y.
,
Liu
,
W. S.
,
Joshi
,
G.
,
Wang
,
H.
,
Lan
,
Y. C.
,
Wang
,
D. Z.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2010
, “
Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3
,”
Nano Lett.
,
10
(
9
), pp.
3373
3378
.10.1021/nl101156v
97.
Peierls
,
R.
,
1929
, “
The Kinetic Theory of Thermal Conduction in Crystals
,”
Ann. Phys.
,
3
(
8
), pp.
1055
1101
.10.1002/andp.19293950803
98.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
(
4
), pp.
1046
1051
.10.1103/PhysRev.113.1046
99.
Klemens
,
P. G.
,
1958
, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Phys., Adv. Res. Appl.
,
7
, pp.
1
98
.
100.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
101.
de Haas
,
W. J.
, and
Biermasz
,
T.
,
1938
, “
The Dependence of Thickness of the Thermal Resistance of Crystals at Low Temperatures
,”
Physica
,
5
, pp.
619
624
.10.1016/S0031-8914(38)80009-4
102.
Casimir
,
H. B. G.
,
1938
, “
Note on the Conduction of Heat in Crystals
,”
Physica
,
5
, pp.
495
500
.10.1016/S0031-8914(38)80162-2
103.
Ziman
,
J. M.
,
1960
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids, International Series of Monographs on Physics
,
Clarendon Press
,
Oxford, UK
.
104.
Ladd
,
A. J. C.
,
Moran
,
B.
, and
Hoover
,
W. G.
,
1986
, “
Lattice Thermal Conductivity—A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics
,”
Phys. Rev. B
,
34
(
8
), pp.
5058
5064
.10.1103/PhysRevB.34.5058
105.
Volz
,
S. G.
, and
Chen
,
G.
,
2000
, “
Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals
,”
Phys. Rev. B
,
61
(
4
), pp.
2651
2656
.10.1103/PhysRevB.61.2651
106.
Li
,
J.
,
Porter
,
L.
, and
Yip
,
S.
,
1998
, “
Atomistic Modeling of Finite-Temperature Properties of Crystalline Beta-SiC: II. Thermal Conductivity and Effects of Point Defects
,”
J. Nucl. Mater.
,
255
(
2–3
), pp.
139
152
.10.1016/S0022-3115(98)00034-8
107.
Che
,
J. W.
,
Cagin
,
T.
,
Deng
,
W. Q.
, and
Goddard
,
W. A.
,
2000
, “
Thermal Conductivity of Diamond and Related Materials From Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
113
(
16
), pp.
6888
6900
.10.1063/1.1310223
108.
Oligschleger
,
C.
, and
Schon
,
J. C.
,
1999
, “
Simulation of Thermal Conductivity and Heat Transport in Solids
,”
Phys. Rev. B
,
59
(
6
), pp.
4125
4133
.10.1103/PhysRevB.59.4125
109.
Green
,
M. S.
,
1954
, “
Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena 2. Irreversible Process in Fluids
,”
J. Chem. Phys.
,
22
(
3
), pp.
398
413
.10.1063/1.1740082
110.
Kubo
,
R.
,
Yokota
,
M.
, and
Nakajima
,
S.
,
1957
, “
Statistical Mechanical Theory of Irreversible Processes 2. Response to Thermal Disturbance
,”
J. Phys. Soc. Jpn.
,
12
(
11
), pp.
1203
1211
.10.1143/JPSJ.12.1203
111.
Hoover
,
W. G.
, and
Ashurst
,
W. T.
,
1975
, “
Nonequilibrium Molecular Dynamics
,”
Theor. Chem.: Adv. Perspect.
,
1
, pp.
1
51
.10.1016/B978-0-12-681901-4.50006-4
112.
Kotake
,
S.
, and
Wakuri
,
S.
,
1994
, “
Molecular Dynamics Study of Heat Conduction in Solid Materials
,”
JSME Int. J.
, Ser. B,
37
(
1
), pp.
103
108
.10.1299/jsmeb.37.103
113.
Ikeshoji
,
T.
, and
Hafskjold
,
B.
,
1994
, “
Nonequilibrium Molecular Dynamics Calculations of Heat Conduction in Liquid and Through Liquid-Gas Interface
,”
Mol. Phys.
,
81
(
2
), pp.
251
261
.10.1080/00268979400100171
114.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(MIT-Pappalardo Series in Mechanical Engineering),
Oxford University Press
,
New York
.
115.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.
116.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
(
9
), p.
094303
.10.1103/PhysRevB.69.094303
117.
Turney
,
J. E.
,
Landry
,
E. S.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2009
, “
Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
(
6
), p.
064301
.10.1103/PhysRevB.79.064301
118.
Qiu
,
B.
,
Bao
,
H.
,
Zhang
,
G. Q.
,
Wu
,
Y.
, and
Ruan
,
X. L.
,
2012
, “
Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
278
285
.10.1016/j.commatsci.2011.08.016
119.
Broido
,
D. A.
,
Ward
,
A.
, and
Mingo
,
N.
,
2005
, “
Lattice Thermal Conductivity of Silicon From Empirical Interatomic Potentials
,”
Phys. Rev. B
,
72
(
1
), p.
014308
.10.1103/PhysRevB.72.014308
120.
Tuckerman
,
M. E.
,
2002
, “
Ab Initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications
,”
J. Phys.: Condens. Matter
,
14
(
50
), pp.
R1297
R1355
.10.1088/0953-8984/14/50/202
121.
Kim
,
H.
, and
Kaviany
,
M.
,
2012
, “
Effect of Thermal Disorder on High Figure of Merit in PbTe
,”
Phys. Rev. B
,
86
(
4
), p.
045213
.10.1103/PhysRevB.86.045213
122.
Broido
,
D.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.10.1063/1.2822891
123.
Deinzer
,
G.
,
Birner
,
G.
, and
Strauch
,
D.
,
2003
, “
Ab Initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon
,”
Phys. Rev. B
,
67
(
14
), p.
144304
.10.1103/PhysRevB.67.144304
124.
Esfarjani
,
K.
, and
Stokes
,
H.
,
2008
, “
Method to Extract Anharmonic Force Constants From First Principles Calculations
,”
Phys. Rev. B
,
77
(
14
), p.
144112
.10.1103/PhysRevB.77.144112
125.
Esfarjani
,
K.
,
Chen
,
G.
, and
Stokes
,
H.
,
2011
, “
Heat Transport in Silicon From First-Principles Calculations
,”
Phys. Rev. B
,
84
(
8
), p.
085204
.10.1103/PhysRevB.84.085204
126.
Garg
,
J.
,
Bonini
,
N.
,
Kozinsky
,
B.
, and
Marzari
,
N.
,
2011
, “
Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study
,”
Phys. Rev. Lett.
,
106
(
4
), p.
045901
.10.1103/PhysRevLett.106.045901
127.
Garg
,
J.
,
Bonini
,
N.
, and
Marzari
,
N.
,
2011
, “
High Thermal Conductivity in Short-Period Superlattices
,”
Nano Lett.
,
11
(
12
), pp.
5135
5141
.10.1021/nl202186y
128.
Tian
,
Z.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Shiga
,
T.
,
Shiomi
,
J.
, and
Chen
,
G.
,
2012
, “
Phonon Conduction in PbSe, PbTe, and PbTe1−xSex From First-Principles Calculations
,”
Phys. Rev. B
,
85
(
18
), p.
184303
.10.1103/PhysRevB.85.184303
129.
Shiomi
,
J.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity of Half-Heusler Compounds From First-Principles Calculations
,”
Phys. Rev. B
,
84
(
10
), p.
104302
.10.1103/PhysRevB.84.104302
130.
Shiga
,
T.
,
Shiomi
,
J.
,
Ma
,
J.
,
Delaire
,
O.
,
Radzynski
,
T.
,
Lusakowski
,
A.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Microscopic Mechanism of Low Thermal Conductivity in Lead Telluride
,”
Phys. Rev. B
,
85
(
15
), p.
155203
.10.1103/PhysRevB.85.155203
131.
Luo
,
T.
,
Garg
,
J.
,
Shiomi
,
J.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2013
, “
Gallium Arsenide Thermal Conductivity and Optical Phonon Relaxation Times From First-Principles Calculations
,”
Europhys. Lett.
,
101
, p.
16001
.10.1209/0295-5075/101/16001
132.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.10.1103/PhysRevLett.107.095901
133.
Lee
,
S.
,
Esfarjani
,
K.
,
Garg
,
J.
, and
Chen
,
G.
, “
Lattice Thermal Transport in Bi, Sb, and Bi-Sb Alloy From First Principles
,” (unsubmitted manuscript).
134.
Bergman
,
L.
,
Alexson
,
D.
,
Murphy
,
P. L.
,
Nemanich
,
R. J.
,
Dutta
,
M.
,
Stroscio
,
M. A.
,
Balkas
,
C.
,
Shin
,
H.
, and
Davis
,
R. F.
,
1999
, “
Raman Analysis of Phonon Lifetimes in AlN and GaN of Wurtzite Structure
,”
Phys. Rev. B
,
59
(
20
), pp.
12977
12982
.10.1103/PhysRevB.59.12977
135.
Letcher
,
J. J.
,
Kang
,
K.
,
Cahill
,
D. G.
, and
Dlott
,
D. D.
,
2007
, “
Effects of High Carrier Densities on Phonon and Carrier Lifetimes in Si by Time-Resolved Anti-Stokes Raman Scattering
,”
Appl. Phys. Lett.
,
90
(
25
), p.
252104
.10.1063/1.2749728
136.
Delaire
,
O.
,
Ma
,
J.
,
Marty
,
K.
,
May
,
A. F.
,
McGuire
,
M. A.
,
Du
,
M. H.
,
Singh
,
D. J.
,
Podlesnyak
,
A.
,
Ehlers
,
G.
,
Lumsden
,
M. D.
, and
Sales
,
B. C.
,
2011
, “
Giant Anharmonic Phonon Scattering in PbTe
,”
Nature Mater.
,
10
(
8
), pp.
614
619
.10.1038/nmat3035
137.
Hoesch
,
M.
,
Fukuda
,
T.
,
Mizuki
,
J.
,
Takenouchi
,
T.
,
Kawarada
,
H.
,
Sutter
,
J. P.
,
Tsutsui
,
S.
,
Baron
,
A. Q. R.
,
Nagao
,
M.
, and
Takano
,
Y.
,
2007
, “
Phonon Softening in Superconducting Diamond
,”
Phys. Rev. B
,
75
(
14
), p.
140508
.10.1103/PhysRevB.75.140508
138.
Dames
,
C.
, and
Chen
,
G.
,
2006
, “
Thermal Conductivity of Nanostructured Thermoelectric Materials
,”
Thermoelectrics Handbook: Macro to Nano
,
D. M.
Rowe
, ed.,
CRC Press
,
Boca Raton, FL
, Chap. 42.
139.
Koh
,
Y. K.
, and
Cahill
,
D. G.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B
,
76
(
7
), p.
075207
.10.1103/PhysRevB.76.075207
140.
Minnich
,
A. J.
,
Chen
,
G.
,
Mansoor
,
S.
, and
Yilbas
,
B. S.
,
2011
, “
Quasiballistic Heat Transfer Studied Using the Frequency-Dependent Boltzmann Transport Equation
,”
Phys. Rev. B
,
84
(
23
), p.
235207
.10.1103/PhysRevB.84.235207
141.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
142.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R. G.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
,
2010
, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nature Mater.
,
9
(
1
), pp.
26
30
.10.1038/nmat2568
143.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Eliason
,
J. K.
,
Minnich
,
A.
,
Collins
,
K.
,
Chen
,
G.
,
Cuffe
,
J.
,
Kehoe
,
T.
,
Sotomayor Torres
,
C. M.
, and
Nelson
,
K. A.
,
2011
, “
Experimental Evidence of Non-Diffusive Thermal Transport in Si and GaAs
,”
MRS Proc.
,
1347
, Paper No. mrss11-1347-bb08-03.10.1557/opl.2011.1333
144.
Minnich
,
A. J.
,
2012
, “
Determining Phonon Mean Free Paths From Observations of Quasiballistic Thermal Transport
,”
Phys. Rev. Lett.
,
109
(
20
), p.
205901
.10.1103/PhysRevLett.109.205901
145.
Humphrey
,
T. E.
, and
Linke
,
H.
,
2005
, “
Reversible Thermoelectric Nanomaterials
,”
Phys. Rev. Lett.
,
94
(
9
), p.
096601
.10.1103/PhysRevLett.94.096601
146.
Flage-Larsen
,
E.
, and
Prytz
,
O.
,
2011
, “
The Lorenz Function: Its Properties at Optimum Thermoelectric Figure-of-Merit
,”
Appl. Phys. Lett.
,
99
(
20
), p.
202108
.10.1063/1.3656017
147.
Kaibe
,
H.
,
Tanaka
,
Y.
,
Sakata
,
M.
, and
Nishida
,
I.
,
1989
, “
Anisotropic Galvanomagnetic and Thermoelectric Properties of n-Type Bi2Te3 Single-Crystal With the Composition of a Useful Thermoelectric Cooling Material
,”
J. Phys. Chem. Solids
,
50
(
9
), pp.
945
950
.10.1016/0022-3697(89)90045-0
148.
Gallo
,
C. F.
,
Chandrasekhar
,
B. S.
, and
Sutter
,
P. H.
,
1963
, “
Transport Properties of Bismuth Single Crystals
,”
J. Appl. Phys.
,
34
(
1
), pp.
144
152
.10.1063/1.1729056
149.
White
,
G. K.
, and
Woods
,
S. B.
,
1958
, “
The Thermal and Electrical Resistivity of Bismuth and Antimony at Low Temperatures
,”
Philos. Mag.
,
3
(
28
), pp.
342
359
.10.1080/14786435808236822
150.
Uher
,
C.
, and
Goldsmid
,
H. J.
,
1974
, “
Separation of the Electronic and Lattice Thermal Conductivities in Bismuth Crystals
,”
Phys. Status Solidi
,
65
(
2
), pp.
765
772
.10.1002/pssb.2220650237
151.
Abeles
,
B.
,
1963
, “
Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures
,”
Phys. Rev.
,
131
(
5
), pp.
1906
1911
.10.1103/PhysRev.131.1906
152.
Klemens
,
P. G.
,
1955
, “
The Scattering of Low-Frequency Lattice Waves by Static Imperfections
,”
Proc. Phys. Soc. London, Sect. A
,
68
(
12
), pp.
1113
1128
.10.1088/0370-1298/68/12/303
153.
Tamura
,
S.
,
1983
, “
Isotope Scattering of Dispersive Phonons in Ge
,”
Phys. Rev. B
,
27
(
2
), pp.
858
866
.10.1103/PhysRevB.27.858
154.
Klemens
,
P. G.
,
1960
, “
Thermal Resistance Due to Point Defects at High Temperatures
,”
Phys. Rev.
,
119
(
2
), pp.
507
509
.10.1103/PhysRev.119.507
155.
Anderson
,
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev.
,
109
(
5
), pp.
1492
1505
.10.1103/PhysRev.109.1492
156.
Mott
,
N. F.
,
1968
, “
Metal-Insulator Transition
,”
Rev. Mod. Phys.
,
40
(
4
), pp.
677
683
.10.1103/RevModPhys.40.677
157.
Sales
,
B. C.
,
Mandrus
,
D.
,
Chakoumakos
,
B. C.
,
Keppens
,
V.
, and
Thompson
,
J. R.
,
1997
, “
Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses
,”
Phys. Rev. B
,
56
(
23
), pp.
15081
15089
.10.1103/PhysRevB.56.15081
158.
Keppens
,
V.
,
Mandrus
,
D.
,
Sales
,
B. C.
,
Chakoumakos
,
B. C.
,
Dai
,
P.
,
Coldea
,
R.
,
Maple
,
M. B.
,
Gajewski
,
D. A.
,
Freeman
,
E. J.
, and
Bennington
,
S.
,
1998
, “
Localized Vibrational Modes in Metallic Solids
,”
Nature
,
395
(
6705
), pp.
876
878
.10.1038/27625
159.
Long
,
G. J.
,
Hermann
,
R. P.
,
Grandjean
,
F.
,
Alp
,
E. E.
,
Sturhahn
,
W.
,
Johnson
,
C. E.
,
Brown
,
D. E.
,
Leupold
,
O.
, and
Ruffer
,
R.
,
2005
, “
Strongly Decoupled Europium and Iron Vibrational Modes in Filled Skutterudites
,”
Phys. Rev. B
,
71
(
14
), p.
140302
.10.1103/PhysRevB.71.140302
160.
Grannan
,
E. R.
,
Randeria
,
M.
, and
Sethna
,
J. P.
,
1990
, “
Low Temperature Properties of A Model Glass 2. Specific Heat and Thermal Transport
,”
Phys. Rev. B
,
41
(
11
), pp.
7799
7821
.10.1103/PhysRevB.41.7799
161.
Yang
,
J.
,
Zhang
,
W.
,
Bai
,
S. Q.
,
Mei
,
Z.
, and
Chen
,
L. D.
,
2007
, “
Dual-Frequency Resonant Phonon Scattering in BaxRyCo4Sb12 (R = La, Ce, and Sr)
,”
Appl. Phys. Lett.
,
90
(
19
), p.
192111
.10.1063/1.2737422
162.
Wang
,
Y. G.
,
Xu
,
X. F.
, and
Yang
,
J. H.
,
2009
, “
Resonant Oscillation of Misch-Metal Atoms in Filled Skutterudites
,”
Phys. Rev. Lett.
,
102
(
17
), p.
175508
.10.1103/PhysRevLett.102.175508
163.
Meisner
,
G. P.
,
Morelli
,
D. T.
,
Hu
,
S.
,
Yang
,
J.
, and
Uher
,
C.
,
1998
, “
Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members
,”
Phys. Rev. Lett.
,
80
(
16
), pp.
3551
3554
.10.1103/PhysRevLett.80.3551
164.
Bai
,
S. Q.
,
Shi
,
X.
, and
Chen
,
L. D.
,
2010
, “
Lattice Thermal Transport in BaxREyCo4Sb12 (RE = Ce, Yb, and Eu) Double-Filled Skutterudites
,”
Appl. Phys. Lett.
,
96
(
20
), p.
202102
.10.1063/1.3429606
165.
Koza
,
M. M.
,
Johnson
,
M. R.
,
Viennois
,
R.
,
Mutka
,
H.
,
Girard
,
L.
, and
Ravot
,
D.
,
2008
, “
Breakdown of Phonon Glass Paradigm in La- and Ce-Filled Fe4Sb12 Skutterudites
,”
Nature Mater.
,
7
(
10
), pp.
805
810
.10.1038/nmat2260
166.
Zebarjadi
,
M.
,
Esfarjani
,
K.
,
Yang
,
J. A.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2010
, “
Effect of Filler Mass and Binding on Thermal Conductivity of Fully Filled Skutterudites
,”
Phys. Rev. B
,
82
(
19
), p.
195207
.10.1103/PhysRevB.82.195207
167.
Li
,
D. Y.
,
Wu
,
Y. Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P. D.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2934
2936
.10.1063/1.1616981
168.
Ponomareva
,
I.
,
Srivastava
,
D.
, and
Menon
,
M.
,
2007
, “
Thermal Conductivity in Thin Silicon Nanowires: Phonon Confinement Effect
,”
Nano Lett.
,
7
(
5
), pp.
1155
1159
.10.1021/nl062823d
169.
Volz
,
S. G.
, and
Chen
,
G.
,
1999
, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
,
75
(
14
), pp.
2056
2058
.10.1063/1.124914
170.
He
,
Y. P.
, and
Galli
,
G.
,
2012
, “
Microscopic Origin of the Reduced Thermal Conductivity of Silicon Nanowires
,”
Phys. Rev. Lett.
,
108
(
21
), p.
215901
.10.1103/PhysRevLett.108.215901
171.
Donadio
,
D.
, and
Galli
,
G.
,
2009
, “
Atomistic Simulations of Heat Transport in Silicon Nanowires
,”
Phys. Rev. Lett.
,
102
(
19
), p.
195901
.10.1103/PhysRevLett.102.195901
172.
Chen
,
Y. F.
,
Li
,
D. Y.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
,
2005
, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1129
1137
.10.1115/1.2035114
173.
Tian
,
Z. T.
,
Esfarjani
,
K.
,
Shiomi
,
J.
,
Henry
,
A. S.
, and
Chen
,
G.
,
2011
, “
On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures
,”
Appl. Phys. Lett.
,
99
(
5
), p.
053122
.10.1063/1.3615709
174.
Kazan
,
M.
,
Guisbiers
,
G.
,
Pereira
,
S.
,
Correia
,
M. R.
,
Masri
,
P.
,
Bruyant
,
A.
,
Volz
,
S.
, and
Royer
,
P.
,
2010
, “
Thermal Conductivity of Silicon Bulk and Nanowires: Effects of Isotopic Composition, Phonon Confinement, and Surface Roughness
,”
J. Appl. Phys.
,
107
(
8
), p.
083503
.10.1063/1.3340973
175.
Mingo
,
N.
,
2003
, “
Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations
,”
Phys. Rev. B
,
68
(
11
), p.
113308
.10.1103/PhysRevB.68.113308
176.
Mingo
,
N.
,
Yang
,
L.
,
Li
,
D.
, and
Majumdar
,
A.
,
2003
, “
Predicting the Thermal Conductivity of Si and Ge Nanowires
,”
Nano Lett.
,
3
(
12
), pp.
1713
1716
.10.1021/nl034721i
177.
Fuchs
,
K.
,
1938
, “
The Conductivity of Thin Metallic Films According to the Electron Theory of Metals
,”
Proc. Cambridge Philos. Soc.
,
34
, pp.
100
108
.10.1017/S0305004100019952
178.
Sondheimer
,
E. H.
,
1952
, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
,
1
(
1
), pp.
1
42
.10.1080/00018735200101151
179.
Chen
,
R.
,
Hochbaum
,
A. I.
,
Murphy
,
P.
,
Moore
,
J.
,
Yang
,
P. D.
, and
Majumdar
,
A.
,
2008
, “
Thermal Conductance of Thin Silicon Nanowires
,”
Phys. Rev. Lett.
,
101
(
10
), p.
105501
.10.1103/PhysRevLett.101.105501
180.
Murphy
,
P. G.
, and
Moore
,
J. E.
,
2007
, “
Coherent Phonon Scattering Effects on Thermal Transport in Thin Semiconductor Nanowires
,”
Phys. Rev. B
,
76
(
15
), p.
155313
.10.1103/PhysRevB.76.155313
181.
Lim
,
J. W.
,
Hippalgaonkar
,
K.
,
Andrews
,
S. C.
,
Majumdar
,
A.
, and
Yang
,
P. D.
,
2012
, “
Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires
,”
Nano Lett.
,
12
(
5
), pp.
2475
2482
.10.1021/nl3005868
182.
Slack
,
G. A.
,
1979
, “
The Thermal Conductivity of Nonmetallc Crystals
,”
Solid State Physics
,
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
, eds.,
Academic Press
,
New York
, pp.
1
73
.
183.
Cahill
,
D. G.
,
Watson
,
S. K.
, and
Pohl
,
R. O.
,
1992
, “
Lower Limit to the Thermal Conductivity of Disordered Crystals
,”
Phys. Rev. B
,
46
(
10
), pp.
6131
6140
.10.1103/PhysRevB.46.6131
184.
Chiritescu
,
C.
,
Cahill
,
D. G.
,
Nguyen
,
N.
,
Johnson
,
D.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
Zschack
,
P.
,
2007
, “
Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
,”
Science
,
315
(
5810
), pp.
351
353
.10.1126/science.1136494
185.
Costescu
,
R. M.
,
Cahill
,
D. G.
,
Fabreguette
,
F. H.
,
Sechrist
,
Z. A.
, and
George
,
S. M.
,
2004
, “
Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates
,”
Science
,
303
(
5660
), pp.
989
990
.10.1126/science.1093711
186.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
,
2002
, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
,
91
(
8
), pp.
5079
5088
.10.1063/1.1458057
187.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
,
1997
, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.10.1063/1.119402
188.
Uma
,
S.
,
Mcconnell
,
A. D.
,
Asheghi
,
M.
,
Kurabayashi
,
K.
, and
Goodson
,
K. E.
,
2001
, “
Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers
,”
Int. J. Thermophys.
,
22
(
2
), pp.
605
616
.10.1023/A:1010791302387
189.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.10.1063/1.123994
190.
Cuffe
,
J.
,
Chavez
,
E.
,
Shchepetov
,
A.
,
Chapuis
,
P. O.
,
El Boudouti
,
E. H.
,
Alzina
,
F.
,
Kehoe
,
T.
,
Gomis-Bresco
,
J.
,
Dudek
,
D.
,
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Prunnila
,
M.
,
Ahopelto
,
J.
, and
Torres
,
C. M. S.
,
2012
, “
Phonons in Slow Motion: Dispersion Relations in Ultrathin Si Membranes
,”
Nano Lett.
,
12
(
7
), pp.
3569
3573
.10.1021/nl301204u
191.
Cuffe
,
J.
,
Chavez
,
E.
,
Chapuis
,
P.-O.
,
Alzina
,
F.
,
Sotomayor Torres
,
C. M.
,
Ristow
,
O.
,
Hettich
,
M.
,
Dekorsy
,
T.
,
Shchepetov
,
A.
,
Prunnila
,
M.
, and
Ahopelto
,
J.
, 2013, “
Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes
,”
Phys. Rev. Lett.
,
110
(
9
), p.
095503
.10.1103/PhysRevLett.110.095503
192.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025901
.10.1103/PhysRevLett.110.025901
193.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
194.
Chen
,
G.
,
2002
, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
320
328
.10.1115/1.1447938
195.
Ren
,
S. Y.
, and
Dow
,
J. D.
,
1982
, “
Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
25
(
6
), pp.
3750
3755
.10.1103/PhysRevB.25.3750
196.
Colvard
,
C.
,
Gant
,
T. A.
,
Klein
,
M. V.
,
Merlin
,
R.
,
Fischer
,
R.
,
Morkoc
,
H.
, and
Gossard
,
A. C.
,
1985
, “
Folded Acoustic and Quantized Optic Phonons in (GaAl)As Superlattices
,”
Phys. Rev. B
,
31
(
4
), pp.
2080
2091
.10.1103/PhysRevB.31.2080
197.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
56
(
17
), pp.
10754
10757
.10.1103/PhysRevB.56.10754
198.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
945
953
.10.1115/1.2826085
199.
Ward
,
A.
, and
Broido
,
D. A.
,
2008
, “
Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices
,”
Phys. Rev. B
,
77
(
24
), p.
245328
.10.1103/PhysRevB.77.245328
200.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
(
5
), pp.
927
930
.10.1103/PhysRevLett.84.927
201.
Yang
,
B.
, and
Chen
,
G.
,
2003
, “
Partially Coherent Phonon Heat Conduction in Superlattices
,”
Phys. Rev. B
,
67
(
19
), p.
195311
.10.1103/PhysRevB.67.195311
202.
Daly
,
B. C.
,
Maris
,
H. J.
,
Imamura
,
K.
, and
Tamura
,
S.
,
2002
, “
Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
66
(
2
), p.
024301
.10.1103/PhysRevB.66.024301
203.
Yu
,
J. K.
,
Mitrovic
,
S.
,
Tham
,
D.
,
Varghese
,
J.
, and
Heath
,
J. R.
,
2010
, “
Reduction of Thermal Conductivity in Phononic Nanomesh Structures
,”
Nat. Nanotechnol.
,
5
(
10
), pp.
718
721
.10.1038/nnano.2010.149
204.
Luckyanova
,
M. N.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Jandl
,
A.
,
Bulsara
,
M. T.
,
Schmidt
,
A. J.
,
Minnich
,
A. J.
,
Chen
,
S.
,
Dresselhaus
,
M. S.
,
Ren
,
Z.
,
Fitzgerald
,
E. A.
, and
Chen
,
G.
,
2012
, “
Coherent Phonon Heat Conduction in Superlattices
,”
Science
,
338
(
6109
), pp.
936
939
.10.1126/science.1225549
205.
Katika
,
K. M.
, and
Pilon
,
L.
,
2008
, “
The Effect of Nanoparticles on the Thermal Conductivity of Crystalline Thin Films at Low Temperatures
,”
J. Appl. Phys.
,
103
(
11
), p.
114308
.10.1063/1.2937208
206.
Kim
,
W.
, and
Majumdar
,
A.
,
2006
, “
Phonon Scattering Cross Section of Polydispersed Spherical Nanoparticles
,”
J. Appl. Phys.
,
99
(
8
), p.
084306
.10.1063/1.2188251
207.
McGaughey
,
A. J. H.
, and
Jain
,
A.
,
2012
, “
Nanostructure Thermal Conductivity Prediction by Monte Carlo Sampling of Phonon Free Paths
,”
Appl. Phys. Lett.
,
100
(
6
), p.
061911
.10.1063/1.3683539
208.
Little
,
W. A.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
(
3
), pp.
334
349
.10.1139/p59-037
209.
Swartz
,
E.
, and
Pohl
,
R.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
210.
Schelling
,
P.
,
Phillpot
,
S.
, and
Keblinski
,
P.
,
2002
, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
,
80
(
14
), pp.
2484
2486
.10.1063/1.1465106
211.
Sun
,
L.
, and
Murthy
,
J.
,
2010
, “
Molecular Dynamics Simulation of Phonon Scattering at Silicon/Germanium Interfaces
,”
ASME J. Heat Transfer
,
132
(
10
), p.
102403
.10.1115/1.4001912
212.
Zuckerman
,
N.
, and
Lukes
,
J.
,
2008
, “
Acoustic Phonon Scattering From Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study
,”
Phys. Rev. B
,
77
(
9
), p.
094302
.10.1103/PhysRevB.77.094302
213.
Tian
,
Z. T.
,
White
,
B. E.
, and
Sun
,
Y.
,
2010
, “
Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films
,”
Appl. Phys. Lett.
,
96
(
26
), p.
263113
.10.1063/1.3458831
214.
Young
,
D.
, and
Maris
,
H.
,
1989
, “
Lattice Dynamics Calculation of the Kapitza Resistance Between FCC Lattices
,”
Phys. Rev. B
,
40
(
6
), pp.
3685
3693
.10.1103/PhysRevB.40.3685
215.
Pettersson
,
S.
, and
Mahan
,
G.
,
1990
, “
Theory of the Thermal Boundary Resistance Between Dissimilar Lattices
,”
Phys. Rev. B
,
42
(
12
), pp.
7386
7390
.10.1103/PhysRevB.42.7386
216.
Zhao
,
H.
, and
Freund
,
J.
,
2005
, “
Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si-Ge Interfaces
,”
J. Appl. Phys.
,
97
(
2
), p.
024903
.10.1063/1.1835565
217.
Wang
,
J.
, and
Wang
,
J.
,
2006
, “
Mode-Dependent Energy Transmission Across Nanotube Junctions Calculated With a Lattice Dynamics Approach
,”
Phys. Rev. B
,
74
(
5
), p.
054303
.10.1103/PhysRevB.74.054303
218.
Zhang
,
W.
,
Fisher
,
T.
, and
Mingo
,
N.
,
2007
, “
The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
,”
Numer. Heat Transfer, Part B
,
51
(
4
), pp.
333
349
.10.1080/10407780600879048
219.
Volz
,
S.
, ed.,
2009
,
Thermal Nanosystems and Nanomaterials
, Vol. 118,
Springer
,
Heidelberg, Germany
, pp.
1
587
.
220.
Zhang
,
W.
,
Fisher
,
T.
, and
Mingo
,
N.
,
2007
, “
Simulation of Interfacial Phonon Transport in Si-Ge Heterostructures Using an Atomistic Green's Function Method
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
483
491
.10.1115/1.2709656
221.
Hopkins
,
P.
,
Norris
,
P.
,
Tsegaye
,
M.
, and
Ghosh
,
A.
,
2009
, “
Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green's Function Approach Compared to Semiclassical Methods
,”
J. Appl. Phys.
,
106
(
6
), p.
063503
.10.1063/1.3212974
222.
Li
,
X.
, and
Yang
,
R.
,
2012
, “
Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces
,”
J. Phys.: Condens. Matter
,
24
(
15
), p.
155302
.10.1088/0953-8984/24/15/155302
223.
Mingo
,
N.
,
Stewart
,
D.
,
Broido
,
D.
, and
Srivastava
,
D.
,
2008
, “
Phonon Transmission Through Defects in Carbon Nanotubes From First Principles
,”
Phys. Rev. B
,
77
(
3
), p.
033418
.10.1103/PhysRevB.77.033418
224.
Stewart
,
D.
,
Savic
,
I.
, and
Mingo
,
N.
,
2009
, “
First-Principles Calculation of the Isotope Effect on Boron Nitride Nanotube Thermal Conductivity
,”
Nano Lett.
,
9
(
1
), pp.
81
84
.10.1021/nl802503q
225.
Tian
,
Z. T.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method
,”
Phys. Rev. B
,
86
(
23
), p.
235304
.10.1103/PhysRevB.86.235304
226.
Zhao
,
H.
, and
Freund
,
J.
,
2009
, “
Phonon Scattering at a Rough Interface Between Two FCC Lattices
,”
J. Appl. Phys.
,
105
(
1
), p.
013515
.10.1063/1.3054383
227.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
228.
Minnich
,
A.
, and
Chen
,
G.
,
2007
, “
Modified Effective Medium Formulation for the Thermal Conductivity of Nanocomposites
,”
Appl. Phys. Lett.
,
91
(
7
), p.
073105
.10.1063/1.2771040
229.
Ordonez-Miranda
,
J.
,
Yang
,
R. G.
, and
Alvarado-Gil
,
J. J.
,
2011
, “
On the Thermal Conductivity of Particulate Nanocomposites
,”
Appl. Phys. Lett.
,
98
(
23
), p.
233111
.10.1063/1.3593387
230.
Maiti
,
A.
,
Mahan
,
G. D.
, and
Pantelides
,
S. T.
,
1997
, “
Dynamical Simulations of Nonequilibrium Processes—Heat Flow and the Kapitza Resistance Across Grain Boundaries
,”
Solid State Commun.
,
102
(
7
), pp.
517
521
.10.1016/S0038-1098(97)00049-5
231.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2004
, “
Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
,”
J. Appl. Phys.
,
95
(
11
), pp.
6082
6091
.10.1063/1.1702100
232.
Chalopin
,
Y.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Volz
,
S.
, and
Chen
,
G.
,
2012
, “
Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics
,”
Phys. Rev. B
,
85
(
19
), p.
195302
.10.1103/PhysRevB.85.195302
233.
Tian
,
Z. T.
,
2009
, “
Nanoscale Heat Transfer in Argon-Like Solids via Molecular Dynamics Simulations
,” Ph.D. thesis,
State University of New York at Binghamton
,
Binghamton, NY
.
234.
Roberts
,
N. A.
,
Walker
,
D. G.
, and
Li
,
D. Y.
,
2009
, “
Molecular Dynamics Simulation of Thermal Conductivity of Nanocrystalline Composite Films
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2002
2008
.10.1016/j.ijheatmasstransfer.2008.10.027
235.
Tian
,
Z. T.
,
Kim
,
S.
,
Sun
,
Y.
, and
White
,
B.
,
2009
, “
A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method
,” Proceedings of the
ASME
InterPACK Conference 2009, Vol.
1
, pp.
607
615
.10.1115/InterPACK2009-89272
236.
Prasher
,
R.
,
2006
, “
Thermal Conductivity of Composites of Aligned Nanoscale and Microscale Wires and Pores
,”
J. Appl. Phys.
,
100
(
3
), p.
034307
.10.1063/1.2219162
237.
Jeng
,
M.-S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042410
.10.1115/1.2818765
238.
Peraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), p.
205331
.10.1103/PhysRevB.84.205331
239.
Péraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2012
, “
An Alternative Approach to Efficient Simulation of Micro/Nanoscale Phonon Transport
,”
Appl. Phys. Lett.
,
101
(
15
), p.
153114
.10.1063/1.4757607
240.
Schmidt
,
A. J.
,
Collins
,
K. C.
,
Minnich
,
A. J.
, and
Chen
,
G.
,
2010
, “
Thermal Conductance and Phonon Transmissivity of Metal-Graphite Interfaces
,”
J. Appl. Phys.
,
107
(
10
), p.
104907
.10.1063/1.3428464
241.
Prasher
,
R.
,
2009
, “
Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts
,”
Appl. Phys. Lett.
,
94
(
4
), p.
041905
.10.1063/1.3075065
242.
Min
,
G.
, and
Rowe
,
D.
,
2000
, “
Improved Model for Calculating the Coefficient of Performance of a Peltier Module
,”
Energy Convers. Manage.
,
41
(
2
), pp.
163
171
.10.1016/S0196-8904(99)00102-8
243.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
235
238
.10.1038/nnano.2008.417
244.
Hatzikraniotis
,
E.
,
Zorbas
,
K.
,
Samaras
,
I.
,
Kyratsi
,
T.
, and
Paraskevopoulos
,
K.
,
2010
, “
Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling
,”
J. Electron. Mater.
,
39
(
9
), pp.
2112
2116
.10.1007/s11664-009-0988-8
245.
Barako
,
M. T.
,
Park
,
W.
,
Marconnet
,
A. M.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2012
, “
A Reliability Study With Infrared Imaging of Thermoelectric Modules Under Thermal Cycling
,” Proceedings of the IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
San Diego, CA
, pp.
86
92
.10.1109/ITHERM.2012.6231417
246.
Kashi
,
S.
,
Keshavarz
,
M.
,
Vasilevskiy
,
D.
,
Masut
,
R.
, and
Turenne
,
S.
,
2012
, “
Effect of Surface Preparation on Mechanical Properties of Ni Contacts on Polycrystalline (Bi1−xSbx)2(Te1−ySey)3 Alloys
,”
J. Electron. Mater.
, pp.
1227
1231
.10.1007/s11664-011-1895-3
247.
Feng
,
H.-P.
,
Yu
,
B.
,
Chen
,
S.
,
Collins
,
K.
,
He
,
C.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2011
, “
Studies on Surface Preparation and Smoothness of Nanostructured Bi2Te3-Based Alloys by Electrochemical and Mechanical Methods
,”
Electrochim. Acta
,
56
(
8
), pp.
3079
3084
.10.1016/j.electacta.2010.12.008
248.
Gao
,
Y.
,
Marconnet
,
A.
,
Panzer
,
M.
,
Leblanc
,
S.
,
Dogbe
,
S.
,
Ezzahri
,
Y.
,
Shakouri
,
A.
, and
Goodson
,
K.
,
2010
, “
Nanostructured Interfaces for Thermoelectrics
,”
J. Electron. Mater.
,
39
(
9
), pp.
1456
1462
.10.1007/s11664-010-1256-7
249.
Mishra
,
H.
,
Cola
,
B. A.
,
Rawat
,
V.
,
Amama
,
P. B.
,
Biswas
,
K. G.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Sands
,
T. D.
,
2009
, “
Thermomechanical and Thermal Contact Characteristics of Bismuth Telluride Films Electrodeposited on Carbon Nanotube Arrays
,”
Adv. Mater.
,
21
(
42
), pp.
4280
4283
.10.1002/adma.200803705
250.
Yazawa
,
K.
, and
Shakouri
,
A.
,
2011
, “
Cost-Efficiency Trade-Off and the Design of Thermoelectric Power Generators
,”
Environ. Sci. Technol.
,
45
(
17
), pp.
7548
7553
.10.1021/es2005418
251.
Kraemer
,
D.
,
Poudel
,
B.
,
Feng
,
H.-P.
,
Caylor
,
J. C.
,
Yu
,
B.
,
Yan
,
X.
,
Ma
,
Y.
,
Wang
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
McEnaney
,
K.
,
Chiesa
,
M.
,
Ren
,
Z.
, and
Chen
,
G.
,
2011
, “
High-Performance Flat-Panel Solar Thermoelectric Generators With High Thermal Concentration
,”
Nature Mater.
,
10
(
7
), pp.
532
538
.10.1038/nmat3013
252.
Kraemer
,
D.
,
McEnaney
,
K.
,
Chiesa
,
M.
, and
Chen
,
G.
,
2012
, “
Modeling and Optimization of Solar Thermoelectric Generators for Terrestrial Applications
,”
Sol. Energy
,
86
(
5
), pp.
1338
1350
.10.1016/j.solener.2012.01.025
You do not currently have access to this content.