Heterogeneous materials are becoming more common in a wide range of functional devices, particularly those involving energy transport, conversion, and storage. Often, heterogeneous materials are crucial to the performance and economic scalability of such devices. Heterogeneous materials with inherently random structures exhibit a strong sensitivity of energy transport properties to processing and operating conditions. Therefore, improved predictive modeling capabilities are needed that quantify the detailed microstructure of such materials based on various manufacturing processes and correlate them with transport properties. In this work, we integrate high fidelity microstructural and transport models, which can aid in the development of high performance energy materials. Heterogeneous materials are generally comprised of nanometric or larger length scale domains of different materials or different phases of the same material. State-of-the-art structural optimization models demonstrate the predictability of the microstructure for heterogeneous materials manufactured via powder compaction of variously shaped and sized particles. The ability of existing diffusion models to incorporate the essential multiscale features in random microstructures is assessed. Lastly, a comprehensive approach is presented for the combined modeling of a high fidelity microstructure and heat transport therein. Exemplary results are given that reinforce the importance of developing predictive models with rich stochastic output that connect microstructural information with physical transport properties.

References

1.
Majumdar
,
A.
,
2004
, “
Thermoelectricity in Semiconductor Nanostructures
,”
Science
,
303
(
5659
), pp.
777
778
.10.1126/science.1093164
2.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.10.1126/science.1158899
3.
Ovshinsky
,
S. R.
,
Fetcenko
,
M. A.
, and
Ross
,
J.
,
1993
, “
A Nickel Metal Hydride Battery for Electric Vehicles
,”
Science
,
260
(
5105
), pp.
176
181
.10.1126/science.260.5105.176
4.
Schlapbach
,
L.
, and
Zuttel
,
A.
,
2001
, “
Hydrogen-Storage Materials for Mobile Applications
,”
Nature (London)
,
414
(
6861
), pp.
353
358
.10.1038/35104634
5.
Whittingham
,
M. S.
,
2004
, “
Lithium Batteries and Cathode Materials
,”
Chem. Rev.
,
104
(
10
), pp.
4271
4301
.10.1021/cr020731c
6.
Baxter
,
J.
,
Bian
,
Z.
,
Chen
,
G.
,
Danielson
,
D.
,
Dresselhaus
,
M. S.
,
Fedorov
,
A. G.
,
Fisher
,
T. S.
,
Jones
,
C. W.
,
Maginn
,
E.
,
Kortshagen
,
U.
,
Manthiram
,
A.
,
Nozik
,
A.
,
Rolison
,
D. R.
,
Sands
,
T.
,
Shi
,
L.
,
Sholl
,
D.
, and
Wu
,
Y.
,
2009
, “
Nanoscale Design to Enable the Revolution in Renewable Energy
,”
Energy Environ. Sci.
,
2
(
6
), pp.
559
588
.10.1039/b821698c
7.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
910
), pp.
1658
1666
.10.1016/j.ijheatmasstransfer.2005.09.039
8.
Riffat
,
S.
, and
Ma
,
X.
,
2003
, “
Thermoelectrics: A Review of Present and Potential Applications
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
913
935
.10.1016/S1359-4311(03)00012-7
9.
Vining
,
C. B.
,
2009
, “
An Inconvenient Truth About Thermoelectrics
,”
Nature Mater.
,
8
(
2
), pp.
83
85
.10.1038/nmat2361
10.
Hochbaum
,
A. I.
,
Chen
,
R.
,
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P.
,
2008
, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature (London)
,
451
(
7175
), pp.
163
167
.10.1038/nature06381
11.
Boukai
,
A. I.
,
Bunimovich
,
Y.
,
Tahir-Kheli
,
J.
,
Yu
,
J.-K.
,
Goddard
,
W. A.
, III
, and
Heath
,
J. R.
,
2008
, “
Silicon Nanowires as Efficient Thermoelectric Materials
,”
Nature (London)
,
451
(
7175
), pp.
168
171
.10.1038/nature06458
12.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nature Nanotechnol.
,
4
(
4
), pp.
235
238
.10.1038/nnano.2008.417
13.
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2009
, “
Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects
,”
Energy Environ. Sci.
,
2
(
5
), pp.
466
479
.10.1039/b822664b
14.
Zebarjadi
,
M.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Ren
,
Z. F.
, and
Chen
,
G.
,
2012
, “
Perspectives on Thermoelectrics: From Fundamentals to Device Applications
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5147
5162
.10.1039/c1ee02497c
15.
Li
,
J.
,
Daniel
,
C.
, and
Wood
,
D. L.
,
2011
,
Cathode Manufacturing for Lithium-Ion Batteries
,
Wiley-VCH
,
Berlin
.
16.
Arico
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J.-M.
, and
Schalkwijk
,
W. V.
,
2005
, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nature Mater.
,
4
(
5
), pp.
366
377
.10.1038/nmat1368
17.
Zhang
,
J.
,
Fisher
,
T. S.
,
Ramachandran
,
P. V.
,
Gore
,
J. P.
, and
Mudawar
,
I.
,
2005
, “
A Review of Heat Transfer Issues in Hydrogen Storage Technologies
,”
ASME J. Heat Transfer
,
127
(
12
), pp.
1391
1399
.10.1115/1.2098875
18.
Yoshida
,
K.
, and
Morigami
,
H.
,
2004
, “
Thermal Properties of Diamond/Copper Composite Material
,”
Microelectron. Reliab.
,
44
(
2
), pp.
303
308
.10.1016/S0026-2714(03)00215-4
19.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.10.1016/j.progpolymsci.2010.11.004
20.
Torquato
,
S.
,
2002
, “
Statistical Description of Microstructures
,”
Ann. Rev. Mater. Res.
,
32
(
1
), pp.
77
111
.10.1146/annurev.matsci.32.110101.155324
21.
Maire
,
E.
,
Buffire
,
J. Y.
,
Salvo
,
L.
,
Blandin
,
J. J.
,
Ludwig
,
W.
, and
Ltang
,
J. M.
,
2001
, “
On the Application of X-Ray Microtomography in the Field of Materials Science
,”
Adv. Eng. Mater.
,
3
(
8
), pp.
539
546
.10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6
22.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials
, Springer, New York.
23.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X.
,
Liu
,
J.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z.
,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.10.1126/science.1156446
24.
Chung
,
S. Y.
,
Bloking
,
J. T.
, and
Chiang
,
Y. M.
,
2002
, “
Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes
,”
Nature Mater.
,
1
(
2
), pp.
123
128
.10.1038/nmat732
25.
Ron
,
M.
,
Gruen
,
D.
,
Mendelsohn
,
M.
, and
Sheet
,
I.
,
1980
, “
Preparation and Properties of Porous Metal Hydride Compacts
,”
J. Less Common Met.
,
74
(
2
), pp.
445
448
.10.1016/0022-5088(80)90183-6
26.
Hsieh
,
T.-Y.
,
Yang
,
J.-Y.
, and
Hong
,
Z.-C.
,
2009
, “
Thermal Conductivity Modeling of Compacted Type Nanocomposites
,”
J. Appl. Phys.
,
106
(
2
), p.
023528
.10.1063/1.3182803
27.
Wang
,
X.
,
Yang
,
Y.
, and
Zhu
,
L.
,
2011
, “
Effect of Grain Sizes and Shapes on Phonon Thermal Conductivity of Bulk Thermoelectric Materials
,”
J. Appl. Phys.
,
110
(
2
), p.
024312
.10.1063/1.3611421
28.
Jeng
,
M.-S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042410
.10.1115/1.2818765
29.
Hoylman
,
D. J.
,
1970
, “
The Densest Lattice Packing of Tetrahedra
,”
Bull. Am. Math. Soc.
,
76
(
1
), pp.
135
137
.10.1090/S0002-9904-1970-12400-4
30.
Chen
,
E. R.
,
2008
, “
A Dense Packing of Regular Tetrahedra
,”
Discrete Comput. Geom.
,
40
(
2
), pp.
214
240
.10.1007/s00454-008-9101-y
31.
Haji-Akbari
,
A.
,
Engel
,
M.
,
Keys
,
A. S.
,
Zheng
,
X.
,
Petschek
,
R. G.
,
Palffy-Muhoray
,
P.
, and
Glotzer
,
S. C.
,
2009
, “
Disordered, Quasicrystalline and Crystalline Phases of Densely Packed Tetrahedra
,”
Nature (London)
,
462
(
7274
), pp.
773
777
.10.1038/nature08641
32.
Torquato
,
S.
, and
Jiao
,
Y.
,
2009
, “
Dense Packings of the Platonic and Archimedean Solids
,”
Nature (London)
,
460
(
7257
), pp.
876
879
.10.1038/nature08239
33.
Hales
,
T. C.
,
2005
, “
A Proof of the Kepler Conjecture
,”
Ann. Math.
,
162
(
3
), pp.
1065
1185
.10.4007/annals.2005.162.1065
34.
Donev
,
A.
,
Stillinger
,
F. H.
,
Chaikin
,
P. M.
, and
Torquato
,
S.
,
2004
, “
Unusually Dense Crystal Packings of Ellipsoids
,”
Phys. Rev. Lett.
,
92
(
25
), p.
255506
.10.1103/PhysRevLett.92.255506
35.
Torquato
,
S.
, and
Jiao
,
Y.
,
2009
, “
Dense Packings of Polyhedra: Platonic and Archimedean Solids
,”
Phys. Rev. E
,
80
(
4
), p.
041104
.10.1103/PhysRevE.80.041104
36.
Torquato
,
S.
, and
Jiao
,
Y.
,
2010
, “
Exact Constructions of a Family of Dense Periodic Packings of Tetrahedra
,”
Phys. Rev. E
,
81
(
4
), p.
041310
.10.1103/PhysRevE.81.041310
37.
Torquato
,
S.
,
Truskett
,
T. M.
, and
Debenedetti
,
P. G.
,
2000
, “
Is Random Close Packing of Spheres Well Defined?
,”
Phys. Rev. Lett.
,
84
(
10
), pp.
2064
2067
.10.1103/PhysRevLett.84.2064
38.
Mailman
,
M.
,
Schreck
,
C. F.
,
O'Hern
,
C. S.
, and
Chakraborty
,
B.
,
2009
, “
Jamming in Systems Composed of Frictionless Ellipse-Shaped Particles
,”
Phys. Rev. Lett.
,
102
(
25
), p.
255501
.10.1103/PhysRevLett.102.255501
39.
O'Hern
,
C. S.
,
Silbert
,
L. E.
,
Liu
,
A. J.
, and
Nagel
,
S. R.
,
2003
, “
Jamming at Zero Temperature and Zero Applied Stress: The Epitome of Disorder
,”
Phys. Rev. E
,
68
(
1
), p.
011306
.10.1103/PhysRevE.68.011306
40.
Smith
,
K. C.
,
Alam
,
M.
, and
Fisher
,
T. S.
,
2010
, “
Athermal Jamming of Soft Frictionless Platonic Solids
,”
Phys. Rev. E
,
82
(
5
), p.
051304
.10.1103/PhysRevE.82.051304
41.
Smith
,
K. C.
,
Mukherjee
,
P. P.
, and
Fisher
,
T. S.
,
2012
, “
Columnar Ordering in Jammed LiFePO4 Cathodes: Ion Transport Catastrophe and Its Mitigation
,”
Phys. Chem. Chem. Phys.
,
14
(
19
), pp.
7040
7050
.10.1039/c2cp40135e
42.
Smith
,
K. C.
, and
Fisher
,
T. S.
,
2012
, “
Models for Metal Hydride Particle Shape, Packing, and Heat Transfer
,”
Int. J. Hydrogen Energy
,
37
(
18
), pp.
13417
13428
.10.1016/j.ijhydene.2012.06.087
43.
Smith
,
K. C.
,
Fisher
,
T. S.
, and
Alam
,
M.
,
2011
, “
Isostaticity of Constraints in Amorphous Jammed Systems of Soft Frictionless Platonic Solids
,”
Phys. Rev. E
,
84
, p.
030301
.10.1103/PhysRevE.84.030301
44.
Smith
,
K. C.
, and
Fisher
,
T. S.
, “
Conduction in Jammed Systems of Tetrahedra
,”
ASME J. Heat Transfer
(submitted), ArXiv eprint No. arXiv:1206.2990.
45.
Bishop
,
K. J. M.
,
Wilmer
,
C. E.
,
Soh
,
S.
, and
Grzybowski
,
B. A.
,
2009
, “
Nanoscale Forces and Their Uses in Self-Assembly
,”
Small
,
5
(
14
), pp.
1600
1630
.10.1002/smll.200900358
46.
Min
,
Y.
,
Akbulut
,
M.
,
Kristiansen
,
K.
,
Golan
,
Y.
, and
Israelachvili
,
J.
,
2008
, “
The Role of Interparticle and External Forces in Nanoparticle Assembly
,”
Nature Mater.
,
7
(
7
), pp.
527
538
.10.1038/nmat2206
47.
Lois
,
G.
,
Blawzdziewicz
,
J.
, and
O'Hern
,
C. S.
,
2008
, “
Jamming Transition and New Percolation Universality Classes in Particulate Systems With Attraction
,”
Phys. Rev. Lett.
,
100
(
2
), p.
028001
.10.1103/PhysRevLett.100.028001
48.
Gilabert
,
F. A.
,
Roux
,
J.-N.
, and
Castellanos
,
A.
,
2007
, “
Computer SImulation of Model Cohesive Powders: Influence of Assembling Procedure and Contact Laws on Low Consolidation States
,”
Phys. Rev. E
,
75
(
1
), p.
011303
.10.1103/PhysRevE.75.011303
49.
Sun
,
S.
,
Murray
,
C. B.
,
Weller
,
D.
,
Folks
,
L.
, and
Moser
,
A.
,
2000
, “
Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices
,”
Science
,
287
(
5460
), pp.
1989
1992
.10.1126/science.287.5460.1989
50.
Talapin
,
D. V.
,
Shevchenko
,
E. V.
,
Bodnarchuk
,
M. I.
,
Ye
,
X.
,
Chen
,
J.
, and
Murray
,
C. B.
,
2009
, “
Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices
,”
Nature (London)
,
461
(
7266
), pp.
964
967
.10.1038/nature08439
51.
Shevchenko
,
E. V.
,
Talapin
,
D. V.
,
Murray
,
C. B.
, and
O'Brien
,
S.
,
2006
, “
Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices
,”
J. Am. Chem. Soc.
,
128
(
11
), pp.
3620
3637
.10.1021/ja0564261
52.
Disch
,
S.
,
Wetterskog
,
E.
,
Hermann
,
R. P.
,
Salazar-Alvarez
,
G.
,
Busch
,
P.
,
Bruckel
,
T.
,
Bergstrom
,
L.
, and
Kamali
,
S.
,
2011
, “
Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes
,”
Nano Lett.
,
11
(
4
), pp.
1651
1656
.10.1021/nl200126v
53.
Li
,
F.
,
Delo
,
S.
, and
Stein
,
A.
,
2007
, “
Disassembly and Self-Reassembly in Periodic Nanostructures: A Face-Centered-to-Simple-Cubic Transformation
,”
Angew. Chem.Int. Ed.
,
46
(
35
), pp.
6666
6669
.10.1002/anie.200701553
54.
Demortiere
,
A.
,
Launois
,
P.
,
Goubet
,
N.
,
Albouy
,
P.-A.
, and
Petit
,
C.
,
2008
, “
Shape-Controlled Platinum Nanocubes and Their Assembly Into Two-Dimensional and Three-Dimensional Superlattices
,”
J. Phys. Chem. B
,
112
(
46
), pp.
14583
14592
.10.1021/jp802081n
55.
Henzie
,
J.
,
Grunwald
,
M.
,
Widmer-Cooper
,
A.
,
Geissler
,
P. L.
, and
Yang
,
P.
,
2012
, “
Self-Assembly of Uniform Polyhedral Silver Nanocrystals Into Densest Packings and Exotic Superlattices
,”
Nature Mater.
,
11
(
2
), pp.
131
137
.10.1038/nmat3178
56.
Volkov
,
N.
,
Lyubartsev
,
A.
, and
Bergstrom
,
L.
,
2012
, “
Phase Transitions and Thermodynamic Properties of Dense Assemblies of Truncated Nanocubes and Cuboctahedra
,”
Nanoscale
,
4
(
15
), pp.
4765
4771
.10.1039/c2nr30411b
57.
Buehler
,
M. J.
,
2006
, “
Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self Assembly, Self-Folding, and Fracture
,”
J. Mater. Res.
,
21
(
11
), pp.
2855
2869
.10.1557/jmr.2006.0347
58.
Zhigilei
,
L. V.
,
Wei
,
C.
, and
Srivastava
,
D.
,
2005
, “
Mesoscopic Model for Dynamic Simulations of Carbon Nanotubes
,”
Phys. Rev. B
,
71
(
16
), p.
165417
.10.1103/PhysRevB.71.165417
59.
Lu, W., Ding, Y., Chen, Y., Wang, Z. L., and Fang, J.,
2005
, “
Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth
,”
J. Am. Chem. Soc.
,
127
(
28
), pp.
10112
10116
.10.1021/ja052286j
60.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1989
,
Computer Simulation of Liquids
,
Clarendon
,
New York
.
61.
Baruchel
,
J.
,
Maire
,
E.
, and
Buffiere
,
J.-Y.
,
2000
,
X-Ray Tomography in Material Science
, Hermes Science, Paris.
62.
Sezgin
,
M.
, and
Sankur
,
B. l.
,
2004
, “
Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation
,”
J. Electron. Imag.
,
13
(
1
), pp.
146
168
.10.1117/1.1631315
63.
Faessel
,
M.
, and
Jeulin
,
D.
,
2010
, “
Segmentation of 3D Microtomographic Images of Granular Materials With the Stochastic Watershed
,”
J. Microsc.
,
239
(
1
), pp.
17
31
.10.1111/j.1365-2818.2009.03349.x
64.
Garcia
,
R. E.
,
Reid
,
A. C. E.
,
Langer
,
S. A.
, and
Carter
,
W. C.
,
2005
,
Microstructural Modeling of Multifunctional Material Properties: The OOF Project, in Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications
,
Wiley-VCH
,
Berlin
, pp.
573
587
.
65.
Maxwell
,
J. C.
,
1873
,
Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford
.
66.
Rayleigh
,
L.
,
1892
, “
On the Influence of Obstacles Arranged in Rectangular Order on the Properties of a Medium
,”
Philos. Mag.
,
34
(
211
), pp.
481
502
.10.1080/14786449208620364
67.
Landauer
,
R.
,
1952
, “
The Electrical Resistance of Binary Metallic Mixtures
,”
J. Appl. Phys.
,
23
(
7
), pp.
779
784
.10.1063/1.1702301
68.
Sen
,
A. K.
, and
Torquato
,
S.
,
1989
, “
Effective Conductivity of Anisotropic Two-Phase Composite Media
,”
Phys. Rev. B
,
39
(
7
), pp.
4504
4515
.10.1103/PhysRevB.39.4504
69.
Torquato
,
S.
,
1985
, “
Effective Electrical Conductivity of Two-Phase Disordered Composite Media
,”
J. Appl. Phys.
,
58
(
10
), pp.
3790
3797
.10.1063/1.335593
70.
Torquato
,
S.
,
1986
, “
Bulk Properties of Two-Phase Disordered Media. III. New Bounds on the Effective Conductivity of Dispersions of Penetrable Spheres
,”
J. Chem. Phys.
,
84
(
11
), pp.
6345
6359
.10.1063/1.450727
71.
Choy
,
T. C.
,
1999
,
Effective Medium Theory: Principles and Applications
,
Clarendon
,
Oxford
.
72.
Milton
,
G.
,
1985
, “
The Coherent Potential Approximation is a Realizable Effective Medium Scheme
,”
Commun. Math. Phys.
,
99
(
4
), pp.
463
500
.10.1007/BF01215906
73.
Yonezawa
,
F.
, and
Cohen
,
M.
,
1983
, “
Granular Effective Medium Approximation
,”
J. Appl. Phys.
,
54
(
6
), pp.
2895
2899
.10.1063/1.332490
74.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
75.
Hatta
,
H.
, and
Taya
,
M.
,
1986
, “
Thermal Conductivity of Coated Filler Composites
,”
J.Appl. Phys.
,
59
(
6
), pp.
1851
1860
.10.1063/1.336412
76.
Dunn
,
M. L.
, and
Taya
,
M.
,
1993
, “
The Effective Thermal Conductivity of Composites With Coated Reinforcement and the Application to Imperfect Interfaces
,”
J. Appl. Phys.
,
73
(
4
), pp.
1711
1722
.10.1063/1.353206
77.
Nan
,
C.-W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.10.1063/1.1808874
78.
Minnich
,
A.
, and
Chen
,
G.
,
2007
, “
Modified Effective Medium Formulation for the Thermal Conductivity of Nanocomposites
,”
Appl. Phys. Lett.
,
91
(
7
), p.
073105
.10.1063/1.2771040
79.
Zhang
,
Y.
,
Mehta
,
R. J.
,
Belley
,
M.
,
Han
,
L.
,
Ramanath
,
G.
, and
Borca-Tasciuc
,
T.
,
2012
, “
Lattice Thermal Conductivity Diminution and High Thermoelectric Power Factor Retention in Nanoporous Macroassemblies of Sulfur-Doped Bismuth Telluride Nanocrystals
,”
Appl. Phys. Lett.
,
100
(
19
), p.
193113
.10.1063/1.4711774
80.
Gharagozloo
,
P. E.
, and
Goodson
,
K. E.
,
2010
, “
Aggregate Fractal Dimensions and Thermal Conduction in Nanofluids
,”
J. Appl. Phys.
,
108
(
7
), p.
074309
.10.1063/1.3481423
81.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.10.1063/1.1728579
82.
Torquato
,
S.
,
1991
, “
Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties
,”
ASME Appl. Mech. Rev.
,
44
(
2
), pp.
37
76
.10.1115/1.3119494
83.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
(
7
), pp.
527
544
.10.1080/10407782.2010.511987
84.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2008
, “
Thermal Transport in Finite-Sized Nanocomposites
,”
ASME
Conf. Proc., Vol. 1, pp.
15
24
.10.1115/HT2008-56385
85.
Duong
,
H. M.
,
Yamamoto
,
N.
,
Papavassiliou
,
D. V.
,
Maruyama
,
S.
, and
Wardle
,
B. L.
,
2009
, “
Inter-Carbon Nanotube Contact in Thermal Transport of Controlled-Morphology Polymer Nanocomposites
,”
Nanotechnology
,
20
(
15
), p.
155702
.10.1088/0957-4484/20/15/155702
86.
Jeng
,
M.-S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042410
.10.1115/1.2818765
87.
Tian
,
W.
, and
Yang
,
R.
,
2007
, “
Thermal Conductivity Modeling of Compacted Nanowire Composites
,”
J. Appl. Phys.
,
101
(
5
), p.
054320
.10.1063/1.2653777
88.
Torquato
,
S.
,
2010
, “
Optimal Design of Heterogeneous Materials
,”
Ann. Rev. Mater. Res.
,
40
(
1
), pp.
101
129
.10.1146/annurev-matsci-070909-104517
89.
McPhedran
,
R.
, and
McKenzie
,
D.
,
1978
, “
The Conductivity of Lattices of Spheres. I. The Simple Cubic Lattice
,”
Proc. R. Soc. London, Ser. A
,
359
(
1696
), pp.
45
63
.10.1098/rspa.1978.0031
90.
Keller
,
J. B.
,
1963
, “
Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders
,”
J. Appl. Phys.
,
34
(
4
), pp.
991
993
.10.1063/1.1729580
91.
Prasher
,
R. S.
,
Hu
,
X. J.
,
Chalopin
,
Y.
,
Mingo
,
N.
,
Lofgreen
,
K.
,
Volz
,
S.
,
Cleri
,
F.
, and
Keblinski
,
P.
,
2009
, “
Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators
,”
Phys. Rev. Lett.
,
102
(
10
), p.
105901
.10.1103/PhysRevLett.102.105901
92.
Ong
,
Z.-Y.
, and
Pop
,
E.
,
2010
, “
Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2
,”
Phys. Rev. B
,
81
(
15
), p.
155408
.10.1103/PhysRevB.81.155408
93.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials
,”
Phys. Rev. Lett.
,
104
(
21
), p.
215902
.10.1103/PhysRevLett.104.215902
94.
Kumar
,
S.
,
Alam
,
M. A.
, and
Murthy
,
J. Y.
,
2007
, “
Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
500
508
.10.1115/1.2709969
95.
Kumar
,
S.
,
Alam
,
M. A.
, and
Murthy
,
J. Y.
,
2005
, “
Thermal Transport in Nanotube Composites for Large-Area Macroelectronics
,”
ASME
Conf. Proc., Vol. 3, pp.
919
927
.10.1115/HT2005-72172
96.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Hu
,
H.
,
2007
, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
(
5
), p.
054313
.10.1063/1.2510998
97.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.10.1021/nn200847u
98.
Cross
,
R.
,
Cola
,
B. A.
,
Fisher
,
T.
,
Xu
,
X.
,
Gall
,
K.
, and
Graham
,
S.
,
2010
, “
A Metallization and Bonding Approach for High Performance Carbon Nanotube Thermal Interface Materials
,”
Nanotechnology
,
21
(
44
), p.
445705
.10.1088/0957-4484/21/44/445705
99.
McCarthy
,
P. T.
,
Marinero
,
E. E.
, and
Fisher
,
T. S.
,
2012
, “
Carbon Nanotube Thermal Interfaces on Gadolinium Foil
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6716
6722
.10.1016/j.ijheatmasstransfer.2012.06.080
100.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2012
, “
Computational Heat Transfer in Complex Systems: A Review of Needs and Opportunities
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031016
.10.1115/1.4005153
101.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
,
2007
, “
Modeling Diffusion in Random Heterogeneous Media: Data-Driven Models, Stochastic Collocation and the Variational Multiscale Method
,”
J. Comput. Phys.
,
226
(
1
), pp.
326
353
.10.1016/j.jcp.2007.04.009
102.
Adams
,
B. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Gay
,
D. M.
,
Haskell
,
K.
,
Hough
,
P. D.
, and
Swiler
,
L. P.
,
2009
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual
,” Technical Report, Sandia National Laboratories.
You do not currently have access to this content.