The present study considers the directional and spectral radiative properties of vertically aligned, heavily doped silicon nanowires for applications as broadband infrared diffuse absorbers. The nanowire array is modeled as a uniaxial medium whose anisotropic dielectric function is based on an effective medium theory. The approximation model is verified by the finite-difference time-domain method. It is found that the radiative properties of this type of nanostructured material could be tailored by controlling the doping concentration, volume filling ratio, and length of the nanowires. Increasing the wire length yields a broadening of the absorption plateau, while increasing the doping concentration results in a shift of the plateau to shorter wavelengths. Moreover, two kinds of omnidirectional absorbers/emitters could be realized based on the doped-silicon nanowire arrays. The first one is a wavelength-tunable wideband absorber, which may be important for applications in thermal imaging and thermophotovoltaic devices. The second acts as a quasi-blackbody in the wavelength region from 3 to 17 μm and, therefore, is promising for use as an absorber in bolometers that measure infrared radiation and as an emitter in space cooling devices that dissipate heat into free space via thermal radiation.

References

1.
Basu
,
S.
,
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
,
2007
, “
Microscale Radiation in Thermophotovoltaic Devices—A Review
,”
Int. J. Energy Res.
,
31
, pp.
689
716
.10.1002/er.1286
2.
Zhang
,
Z. M.
, and
Ye
,
H.
, “
Measurements of Radiative Properties of Engineered Micro/Nanostructures
,”
Ann. Rev. Heat Transfer
(in press).10.1615/AnnualRevHeatTransfer.2012005119
3.
Zhang
,
Z. M.
, and
Wang
,
L. P.
, “
Measurements and Modeling of the Spectral and Directional Radiative Properties of Micro/Nanostructured Materials
,”
Int. J. Thermophys.
(in press).10.1007/s10765-011-1036-5
4.
Heinzel
,
A.
,
Boerner
,
V.
,
Gombert
,
A.
,
Blasi
,
B.
,
Wittwer
,
V.
, and
Luther
,
J.
,
2000
, “
Radiation Filters and Emitters for the NIR Based on Periodically Structured Metal Surfaces
,”
J. Mod. Opt.
,
47
, pp.
2399
2419
.10.1080/09500340008230522
5.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Mainguy
,
S.
, and
Chen
,
Y.
,
2002
, “
Coherent Emission of Light by Thermal Sources
,”
Nature
,
416
, pp.
61
64
.10.1038/416061a
6.
Marquier
,
F.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2004
, “
Engineering Infrared Emission Properties of Silicon in the Near Field and the Far Field
,”
Opt. Commun.
,
237
, pp.
379
388
.10.1016/j.optcom.2004.04.024
7.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2004
, “
Thermal Emission Control With One-Dimensional Metallodielectric Photonic Crystals
,”
Phys. Rev. B
,
70
, p.
125101
.10.1103/PhysRevB.70.125101
8.
Lee
,
B. J.
,
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
,
2008
, “
Surface Waves Between Metallic Films and Truncated Photonic Crystals Observed With Reflectance Spectroscopy
,”
Opt. Lett.
,
33
, pp.
204
206
.10.1364/OL.33.000204
9.
Maruyama
,
S.
,
Kashiwa
,
T.
,
Yugami
,
H.
, and
Esashi
,
M.
,
2001
, “
Thermal Radiation From Two-Dimensionally Confined Modes in Microcavities
,”
Appl. Phys. Lett.
,
79
, pp.
1393
1395
.10.1063/1.1397759
10.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
,
2008
, “
Extraordinary Coherent Thermal Emission From SiC Due to Coupled Resonant Cavities
,”
ASME J. Heat Trans.
,
130
(11), p.
112401
.10.1115/1.2955475
11.
Wang
,
L. P.
,
Lee
,
B. J.
,
Wang
,
X. J.
, and
Zhang
,
Z. M.
,
2009
, “
Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Perot Resonance Cavities
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3024
3031
.10.1016/j.ijheatmasstransfer.2009.01.042
12.
Wang
,
L. P.
,
Basu
,
S.
, and
Zhang
,
Z. M.
,
2012
, “
Direct Measurement of Thermal Emission From a Fabry-Perot Cavity Resonator
,”
ASME J. Heat Trans.
,
134
(7), p.
072701
.10.1115/1.4006088
13.
Chen
,
Y. B.
, and
Zhang
,
Z. M.
,
2007
, “
Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators
,”
Opt. Commun.
,
269
, pp.
411
417
.10.1016/j.optcom.2006.08.040
14.
Chen
,
Y. B.
, and
Zhang
,
Z. M.
,
2008
, “
Heavily Doped Silicon Complex Gratings as Wavelength-Selective Absorbing Surfaces
,”
J. Phys. D: Appl. Phys.
,
41
, p.
095406
.10.1088/0022-3727/41/9/095406
15.
Lee
,
B. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2008
, “
Coherent Thermal Emission by Excitation of Magnetic Polaritons Between Periodic Strips and a Metallic Film
,”
Opt. Express
,
16
, pp.
11328
11336
.10.1364/OE.16.011328
16.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2012
, “
Wavelength-Selective and Diffuse Emitter Enhanced by Magnetic Polaritons for Thermophotovoltaics
,”
Appl. Phys. Lett.
,
100
, p.
063902
.10.1063/1.3684874
17.
Landy
,
N. I.
,
Sajuyigbe
,
S.
,
Mock
,
J. J.
,
Smith
,
D. R.
, and
Padilla
,
W. J.
,
2008
, “
Perfect Metamaterial Absorber
,”
Phys. Rev. Lett.
,
100
, p.
207402
.10.1103/PhysRevLett.100.207402
18.
Liu
,
N.
,
Mesch
,
M.
,
Weiss
,
T.
,
Hentschel
,
M.
, and
Giessen
,
H.
,
2010
, “
Infrared Perfect Absorber and Its Application as Plasmonic Sensor
,”
Nano. Lett.
,
10
, pp.
2342
2348
.10.1021/nl9041033
19.
Liu
,
X. L.
,
Tyler
,
T.
,
Starr
,
T.
,
Starr
,
A. F.
,
Jokerst
,
N. M.
, and
Padilla
,
W. J.
,
2011
, “
Taming the Blackbody With Infrared Metamaterials as Selective Thermal Emitters
,”
Phys. Rev. Lett.
,
107
, p.
045901
.10.1103/PhysRevLett.107.045901
20.
Chen
,
S. Q.
,
Cheng
,
H.
,
Yang
,
H. F.
,
Li
,
J. J.
,
Duan
,
X. Y.
,
Gu
,
C. Z.
, and
Tian
,
J. G.
,
2011
, “
Polarization Insensitive and Omnidirectional Broadband Near Perfect Planar Metamaterial Absorber in the Near Infrared Regime
,”
Appl. Phys. Lett.
,
99
, p.
253104
.10.1063/1.3670333
21.
Cui
,
Y.
,
Xu
,
J.
,
Fung
,
K. H.
,
Jin
,
Y.
,
Kumar
,
A.
,
He
,
S.
, and
Fang
,
N. X.
,
2011
, “
A Thin Film Broadband Absorber Based on Multi-Sized Nanoantennas
,”
Appl. Phys. Lett.
,
99
, p.
253101
.10.1063/1.3672002
22.
Hendrickson
,
J.
,
Guo
,
J.
,
Zhang
,
B.
,
Buchwald
,
W.
, and
Soref
,
R.
,
2012
, “
Wideband Perfect Light Absorber at Midwave Infrared Using Multiplexed Metal Structures
,”
Opt. Lett.
,
37
, pp.
371
373
.10.1364/OL.37.000371
23.
Wang
,
L. P.
, and
Zhang
,
Z. M.
, “
Measurement of Coherent Thermal Emission Due to Magnetic Polaritons in Subwavelength Microstructures
,”
ASME J. Heat Trans.
(accepted).
24.
Yang
,
Z. P.
,
Ci
,
L. J.
,
Bur
,
J. A.
,
Lin
,
S. Y.
, and
Ajayan
,
P. M.
,
2008
, “
Experimental Observation of an Extremely Dark Material Made by a Low-Density Nanotube Array
,”
Nano Lett.
,
8
, pp.
446
451
.10.1021/nl072369t
25.
Mizuno
,
K.
,
Ishii
,
J.
,
Kishida
,
H.
,
Hayamizu
,
Y.
,
Yasuda
,
S.
,
Futaba
,
D. N.
,
Yumura
,
M.
, and
Hata
,
K.
,
2009
, “
A Black Body Absorber From Vertically Aligned Single-Walled Carbon Nanotubes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
, pp.
6044
6047
.10.1073/pnas.0900155106
26.
Lehman
,
J.
,
Sanders
,
A.
,
Hanssen
,
L.
,
Wilthan
,
B.
,
Zeng
,
J. A.
, and
Jensen
,
C.
,
2010
, “
Very Black Infrared Detector From Vertically Aligned Carbon Nanotubes and Electric-Field Poling of Lithium Tantalate
,”
Nano Lett.
,
10
, pp.
3261
3266
.10.1021/nl100582j
27.
Wang
,
X. J.
,
Wang
,
L. P.
,
Adewuyi
,
O. S.
,
Cola
,
B. A.
, and
Zhang
,
Z. M.
,
2010
, “
Highly Specular Carbon Nanotube Absorbers
,”
Appl. Phys. Lett.
,
97
, p.
163116
.10.1063/1.3502597
28.
Ye
,
H.
,
Wang
,
X. J.
,
Lin
,
W.
,
Wong
,
C. P.
, and
Zhang
,
Z. M.
,
2012
, “
Infrared Absorption Coefficients of Vertically Aligned Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
101
, p.
141909
.10.1063/1.4757395
29.
Wu
,
Y.
,
Cui
,
Y.
,
Huynh
,
L.
,
Barrelet
,
C. J.
,
Bell
,
D. C.
, and
Lieber
,
C. M.
,
2004
, “
Controlled Growth and Structures of Molecular-Scale Silicon Nanowires
,”
Nano Lett.
,
4
, pp.
433
436
.10.1021/nl035162i
30.
Ke
,
Y.
,
Weng
,
X.
,
Redwing
,
J. M.
,
Eichfeld
,
C. M.
,
Swisher
,
T. R.
,
Mohney
,
S. E.
, and
Habib
,
Y. M.
,
2009
, “
Fabrication and Electrical Properties of Si Nanowires Synthesized by Al Catalyzed Vapor-Liquid-Solid Growth
,”
Nano Lett.
,
9
, pp.
4494
4499
.10.1021/nl902808r
31.
Yu
,
D. P.
,
Bai
,
Z. G.
,
Ding
,
Y.
,
Hang
,
Q. L.
,
Zhang
,
H. Z.
,
Wang
,
J. J.
,
Zou
,
Y. H.
,
Qian
,
W.
,
Xiong
,
G. C.
,
Zhou
,
H. T.
, and
Feng
,
S. Q.
,
1998
, “
Nanoscale Silicon Wires Synthesized Using Simple Physical Evaporation
,”
Appl. Phys. Lett.
,
72
, pp.
3458
3460
.10.1063/1.121665
32.
Colli
,
A.
,
Fasoli
,
A.
,
Beecher
,
P.
,
Servati
,
P.
,
Pisana
,
S.
,
Fu
,
Y.
,
Flewitt
,
A. J.
,
Milne
,
W. I.
,
Robertson
,
J.
,
Ducati
,
C.
,
De Franceschi
,
S.
,
Hofmann
,
S.
, and
Ferrari
,
A. C.
,
2007
, “
Thermal and Chemical Vapor Deposition of Si Nanowires: Shape Control, Dispersion, and Electrical Properties
,”
J. Appl. Phys.
,
102
, p.
034302
.10.1063/1.2764050
33.
Mallet
,
J.
,
Molinari
,
M.
,
Martineau
,
F.
,
Delavoie
,
F.
,
Fricoteaux
,
P.
, and
Troyon
,
M.
,
2008
, “
Growth of Silicon Nanowires of Controlled Diameters by Electrodeposition in Ionic Liquid at Room Temperature
,”
Nano Lett.
,
8
, pp.
3468
3474
.10.1021/nl802352e
34.
Huang
,
Z.
,
Fang
,
H.
, and
Zhu
,
J.
,
2007
, “
Fabrication of Silicon Nanowire Arrays With Controlled Diameter, Length, and Density
,”
Adv. Mater.
,
19
, pp.
744
748
.10.1002/adma.200600892
35.
Choi
,
W. K.
,
Liew
,
T. H.
,
Dawood
,
M. K.
,
Smith
,
H. I.
,
Thompson
,
C. V.
, and
Hong
,
M. H.
,
2008
, “
Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching
,”
Nano Lett.
,
8
, pp.
3799
3802
.10.1021/nl802129f
36.
Hsu
,
C. M.
,
Connor
,
S. T.
,
Tang
,
M. X.
, and
Cui
,
Y.
,
2008
, “
Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching
,”
Appl. Phys. Lett.
,
93
, p.
133109
.10.1063/1.2988893
37.
Zhang
,
M. L.
,
Peng
,
K. Q.
,
Fan
,
X.
,
Jie
,
J. S.
,
Zhang
,
R. Q.
,
Lee
,
S. T.
, and
Wong
,
N. B.
,
2008
, “
Preparation of Large-Area Uniform Silicon Nanowires Arrays Through Metal-Assisted Chemical Etching
,”
J. Phys. Chem. C
,
112
, pp.
4444
4450
.10.1021/jp077053o
38.
Wang
,
W.
,
Li
,
D.
,
Tian
,
M.
,
Lee
,
Y.-C.
, and
Yang
,
R. G.
,
2012
, “
Wafer-Scale Fabrication of Silicon Nanowire Arrays With Controllable Dimensions
,”
Appl. Surf. Sci.
,
258
, pp.
8649
8655
.10.1016/j.apsusc.2012.05.067
39.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
40.
Basu
,
S.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
,
2010
, “
Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature
,”
ASME J. Heat Trans.
,
132
(2), p.
023301
.10.1115/1.4000171
41.
Wang
,
X. J.
,
Abell
,
J. L.
,
Zhao
,
Y. P.
, and
Zhang
,
Z. M.
,
2012
, “
Angle-Resolved Reflectance of Obliquely Aligned Silver Nanorods
,”
Appl. Opt.
,
51
, pp.
1521
1531
.10.1364/AO.51.001521
42.
Wang
,
X. J.
,
2012
, “
Study of the Radiative Properties of Aligned Carbon Nanotubes and Silver Nanorods
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta
.
43.
Wang
,
H.
,
Liu
,
X. L.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Anisotropic Optical Properties of Silicon Nanowire Arrays Based on Effective Medium Calculation
,”
Int. J. Thermal Sci.
,
65
, pp.
62
69
.10.1016/j.ijthermalsci.2012.08.018
You do not currently have access to this content.