The three-phase moving contact line present at the base of a bubble in nucleate boiling has been a widely researched topic over the past few decades. It has been traditionally divided into three regions: nonevaporating film (order of nanometers), evaporating film (order of microns), and bulk meniscus (order of millimeters). This multiscale nature of the contact line has made it a challenging and complex problem, and led to an incomplete understanding of its dynamic behavior. The evaporating film and bulk meniscus regions have been investigated rigorously through analytical, numerical and experimental means; however, studies focused on the nonevaporating film region have been very sparse. The nanometer length scale and the fluidic nature of the nonevaporating film has limited the applicability of experimental techniques, while its numerical analysis has been questionable due to the presumed continuum behavior and lack of known input parameters, such as the Hamaker constant. Thus in order to gain fundamental insights and understanding, we have used molecular dynamics simulations to study the formation and characteristics of the nonevaporating film for the first time in published literature, and outlined a technique to obtain Hamaker constants from such simulations. Further, in this review, we have shown that the nonevaporating film can exist in a metastable state of reduced/negative liquid pressures. We have also performed molecular simulations of nanoscale meniscus evaporation, and shown that the associated ultrahigh heat flux is comparable to the maximum-achievable kinetic limit of evaporation. Thus, the nonevaporating film and its adjacent nanoscale regions have a significant impact on the overall macroscale dynamics and heat flux behavior of nucleate boiling, and hence should be included in greater details in nucleate boiling simulations and analysis.

References

References
1.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2008
,
“Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
187
227
.10.1080/15567260802317357
2.
Kim
,
J.
,
2009
,
“Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
3.
Lienhard
,
J. H.
, and
Witte
,
L. C.
,
1985
,
“An Historical Review of the Hydrodynamic Theory of Boiling,”
Rev. Chem. Eng.
,
3
(
3–4
), pp.
187
280
.10.1515/REVCE.1985.3.3-4.187
4.
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
,
“Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions,”
Heat Transfer Eng.
,
32
(
10
), pp.
827
842
.10.1080/01457632.2011.548267
5.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
,
“Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
6.
Shoji
,
M.
,
2004
,
“Studies of Boiling Chaos: A Review,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1105
1128
.10.1016/j.ijheatmasstransfer.2003.09.024
7.
Thome
,
J. R.
,
2004
,
“Boiling in Microchannels: A Review of Experiment and Theory,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.10.1016/j.ijheatfluidflow.2003.11.005
8.
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2006
,
“Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling—A Review,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1243
1256
.10.1115/1.2349510
9.
Benselama
,
A. M.
,
Harmand
,
S.
, and
Sefiane
,
K.
,
2011
,
“A Perturbation Method for Solving the Micro-Region Heat Transfer Problem,”
Phys. Fluids
,
23
(
10
), p. 102103.10.1063/1.3643265
10.
Buffone
,
C.
,
Sefiane
,
K.
, and
Christy
,
J. R. E.
,
2004
, “
Experimental Investigation of the Hydrodynamics and Stability of an Evaporating Wetting Film Placed in a Temperature Gradient
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1157
1170
.10.1016/j.applthermaleng.2003.10.038
11.
Buffone
,
C.
,
Sefiane
,
K.
, and
Easson
,
W.
,
2005
,
“Marangoni-Driven Instabilities of an Evaporating Liquid-Vapor Interface,”
Phys. Rev. E
,
71
(
5
), p. 056302.10.1103/PhysRevE.71.056302
12.
Dasgupta
,
S.
,
Kim
,
I. Y.
, and
Wayner
,
P. C.
,
1994
,
“Use of the Kelvin-Clapeyron Equation to Model an Evaporating Curved Microfilm,”
ASME J. Heat Transfer
,
116
(
4
), pp.
1007
1015
.10.1115/1.2911436
13.
Dhavaleswarapu
,
H. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2009
,
“Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film,”
ASME J. Heat Transfer
,
131
(
6
), p. 061501.10.1115/1.3090525
14.
Dhavaleswarapu
,
H. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
,
“Numerical Investigation of an Evaporating Meniscus in a Channel,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
915
924
.10.1016/j.ijheatmasstransfer.2011.10.017
15.
Du
,
S.-Y.
, and
Zhao
,
Y.-H.
,
2011
,
“New Boundary Conditions for the Evaporating Thin-Film Model in a Rectangular Micro Channel,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3694
3701
.10.1016/j.ijheatmasstransfer.2011.02.059
16.
Du
,
S.-Y.
, and
Zhao
,
Y.-H.
,
2012
,
“Numerical Study of Conjugated Heat Transfer in Evaporating Thin-Films Near the Contact Line,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
61
68
.10.1016/j.ijheatmasstransfer.2011.08.039
17.
Ha
,
J. M.
, and
Peterson
,
G. P.
,
1996
,
“The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface,”
ASME J. Heat Transfer
,
118
(
3
), pp.
747
755
.10.1115/1.2822695
18.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
, and
Mukherjee
,
A.
,
2005
,
“Experimental Study of Heat Transfer in an Evaporating Meniscus on a Moving Heated Surface,”
ASME J. Heat Transfer
,
127
(
3
), pp.
244
252
.10.1115/1.1857948
19.
Kim
,
I. Y.
, and
Wayner
,
P. C.
,
1996
,
“Shape of an Evaporating Completely Wetting Extended Meniscus,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
320
325
.10.2514/3.790
20.
Kou
,
Z. H.
, and
Bai
,
M. L.
,
2011
,
“Effects of Wall Slip and Temperature Jump on Heat and Mass Transfer Characteristics of an Evaporating Thin Film,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
874
878
.10.1016/j.icheatmasstransfer.2011.03.032
21.
Kundu
,
P. K.
,
Chakraborty
,
S.
, and
Dasgupta
,
S.
,
2011
,
“Experimental Investigation of Enhanced Spreading and Cooling From a Microgrooved Surface,”
Microfluidics Nanofluidics
,
11
(
4
), pp.
489
499
.10.1007/s10404-011-0814-5
22.
Ma
,
H. B.
,
Cheng
,
P.
,
Borgmeyer
,
B.
, and
Wang
,
Y. X.
,
2008
,
“Fluid Flow and Heat Transfer in the Evaporating Thin Film Region,”
Microfluidics Nanofluidics
,
4
(
3
), pp.
237
243
.10.1007/s10404-007-0172-5
23.
Migliaccio
,
C. P.
,
Dhavaleswarapu
,
H. K.
, and
Garimella
,
S. V.
,
2011
,
“Temperature Measurements Near the Contact Line of an Evaporating Meniscus V-Groove,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1520
1526
.10.1016/j.ijheatmasstransfer.2010.11.040
24.
Morris
,
S. J. S.
,
2004
,
“Heat Flow Near the Triple Junction of an Evaporating Meniscus and a Substrate,”
Proc. R. Soc. London, Ser. A
,
460
(
2049
), pp.
2487
2503
.10.1098/rspa.2004.1308
25.
Mukherjee
,
A.
,
2009
,
“Contribution of Thin-Film Evaporation During Flow Boiling Inside Microchannels,”
Int. J. Thermal Sci.
,
48
(
11
), pp.
2025
2035
.10.1016/j.ijthermalsci.2009.03.006
26.
Panchamgam
,
S. S.
,
Chatterjee
,
A.
,
Plawsky
,
J. L.
, and
Wayner
,
P. C.
, Jr.
,
2008
,
“Comprehensive Experimental and Theoretical Study of Fluid Flow and Heat Transfer in a Microscopic Evaporating Meniscus in a Miniature Heat Exchanger,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5368
5379
.10.1016/j.ijheatmasstransfer.2008.03.023
27.
Panchamgam
,
S. S.
,
Plawsky
,
J. L.
, and
Wayner
,
P. C.
, Jr.
,
2006
,
“Microscale Heat Transfer in an Evaporating Moving Extended Meniscus,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
745
754
.10.1016/j.expthermflusci.2006.03.004
28.
Park
,
K.
, and
Lee
,
K. S.
,
2003
,
“Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4587
4594
.10.1016/S0017-9310(03)00306-5
29.
Plawsky
,
J. L.
,
Panchamgam
,
S. S.
,
Gokhale
,
S. J.
,
Wayner
,
P. C.
, and
Dasgupta
,
S.
,
2004
,
“A Study of the Oscillating Corner Meniscus in a Vertical Constrained Vapor Bubble System,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
559
572
.10.1016/j.spmi.2003.11.010
30.
Pratt
,
D. M.
,
Brown
,
J. R.
, and
Hallinan
,
K. P.
,
1998
,
“Thermocapillary Effects on the Stability of a Heated, Curved Meniscus,”
ASME J. Heat Transfer
,
120
(
1
), pp.
220
226
.10.1115/1.2830045
31.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2011
,
“A Microscale Model for Thin-Film Evaporation in Capillary Wick Structures,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
169
179
.10.1016/j.ijheatmasstransfer.2010.09.037
32.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
,
“Characteristics of an Evaporating Thin Film in a Microchannel,”
Int, J, Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
33.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
,
“An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
34.
Wang
,
H.
,
Pan
,
Z.
, and
Garimella
,
S. V.
,
2011
,
“Numerical Investigation of Heat and Mass Transfer From an Evaporating Meniscus in a Heated Open Groove,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
3015
3023
.10.1016/j.ijheatmasstransfer.2011.02.047
35.
Zhao
,
J.-J.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Wang
,
B.-X.
,
2011
,
“Effect of Nanofluids on Thin Film Evaporation in Microchannels,”
J. Nanopart. Res.
,
13
(
10
), pp.
5033
5047
.10.1007/s11051-011-0484-y
36.
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
,
2011
,
“Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling,”
Appl. Phys. Lett.
,
98
(
7
), p. 071908.10.1063/1.3555430
37.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
,
“Nanowires for Enhanced Boiling Heat Transfer,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
38.
Dhir
,
V. K.
,
1998
,
“Boiling Heat Transfer,”
Ann. Rev. Fluid Mech.
,
30
, pp.
365
401
.10.1146/annurev.fluid.30.1.365
39.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
,
“Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.10.1016/j.ijheatmasstransfer.2009.10.008
40.
Kim
,
S.
,
Kim
,
H. D.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Jo
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2010
,
“Effects of Nano-Fluid and Surfaces With Nano Structure on the Increase of CHF,”
Exp. Therm. Fluid Science
,
34
(
4
), pp.
487
495
.10.1016/j.expthermflusci.2009.05.006
41.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
,
“Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
42.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
,
“Nanostructured Copper Interfaces for Enhanced Boiling,”
Small
,
4
(
8
), pp.
1084
1088
.10.1002/smll.200700991
43.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
,
“Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.10.1016/S0017-9310(01)00084-9
44.
Lu
,
M.-C.
,
Chen
,
R.
,
Srinivasan
,
V.
,
Carey
,
V. P.
, and
Majumdar
,
A.
,
2011
,
“Critical Heat Flux of Pool Boiling on Si Nanowire Array-Coated Surfaces,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5359
5367
.10.1016/j.ijheatmasstransfer.2011.08.007
45.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H. H.
, and
Attinger
,
D.
,
2010
,
“Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?,”
Appl. Phys. Lett.
,
97
(
14
), p. 141909.10.1063/1.3485057
46.
Chu
,
K. H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
,
“Structured Surfaces for Enhanced Pool Boiling Heat Transfer,”
Appl. Phys. Lett.
,
100
(
24
), p. 241603.10.1063/1.4724190
47.
Gambill
,
W. R.
, and
Lienhard
,
J. H.
,
1989
,
“An Upper Bound for the Critical Boiling Heat Flux,”
ASME J. Heat Transfer
,
111
(
3
), pp.
815
818
.10.1115/1.3250759
48.
Fisher
,
J. C.
,
1948
,
“The Fracture of Liquids,”
J. Appl. Phys.
,
19
(11), pp.
1062
–1067.10.1063/1.1698012
49.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis
,
London
.
50.
Wayner
,
P. C.
,
1999
,
“Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern Award Review,”
AIChE J.
,
45
(
10
), pp.
2055
2068
.10.1002/aic.690451004
51.
Chatterjee
,
A.
,
Plawsky
,
J. L.
, and
Wayner
,
P. C.
, Jr.
,
2011
, “
Disjoining Pressure and Capillarity in the Constrained Vapor Bubble Heat Transfer System
,”
Adv. Colloid Interface Sci.
,
168
(
1–2
), pp.
40
49
.10.1016/j.cis.2011.02.011
52.
Stoddard
,
S. D.
, and
Ford
,
J.
,
1973
,
“Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System,”
Phys. Rev. A
,
8
(
3
), pp.
1504
1512
.10.1103/PhysRevA.8.1504
53.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Claredon
,
Oxford, UK
.
54.
Rapaport
,
D. C.
,
2004
,
The Art of Molecular Dynamics Simulation
,
Cambridge University
,
Cambridge, England
.
55.
Sadus
,
R. J.
,
1999
,
Molecular Simulation of Fluids
,
Elsevier
,
Netherlands
.
56.
Weng
,
J.-G.
,
Park
,
S.
,
Lukes
,
J. R.
, and
Tien
,
C.-L.
,
2000
,
“Molecular Dynamics Investigation of Thickness Effect on Liquid Films,”
J. Chem. Phys.
,
113
(
14
), pp.
5917
5923
.10.1063/1.1290698
57.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2009
,
“Nanoscale Liquid-Vapor Phase-Change Physics in Nonevaporating Region at the Three-Phase Contact Line,”
J. Appl. Phys.
,
106
(
6
), p.
064911
.10.1063/1.3225992
58.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2008
,
“Molecular Dynamic Simulation of Platinum Heater and Associated Nano-Scale Liquid Argon Film Evaporation and Colloidal Adsorption Characteristics,”
J. Colloid Interface Sci.
,
328
(
1
), pp.
134
146
.10.1016/j.jcis.2008.09.018
59.
Abraham
,
F. F.
,
1978
, “
Interfacial Density Profile of a Lennard-Jones Fluid in Contact With a (100) Lennard-Jones Wall and Its Relationship to Idealized Fluid-Wall Systems: A Monte Carlo Simulation
,”
J. Chem. Phys.
,
68
(
8
), pp.
3713
3716
.10.1063/1.436229
60.
Drazer
,
G.
,
Khusid
,
B.
,
Koplik
,
J.
, and
Acrivos
,
A.
,
2005
,
“Wetting and Particle Adsorption in Nanoflows,”
Phys. Fluids
,
17
(
1
), p. 017102.10.1063/1.1815341
61.
Koplik
,
J.
,
Banavar
,
J. R.
, and
Willemsen
,
J. F.
,
1989
,
“Molecular-Dynamics of Fluid-Flow at Solid-Surfaces,”
Phys. Fluids
,
1
(
5
), pp.
781
794
.10.1063/1.857376
62.
Markvoort
,
A. J.
,
Hilbers
,
P. A. J.
, and
Nedea
,
S. V.
,
2005
,
“Molecular Dynamics Study of the Influence of Wall-Gas Interactions on Heat Flow in Nanochannels,”
Phys. Rev. E
,
71
(
6
), p. 066702.10.1103/PhysRevE.71.066702
63.
Nagayama
,
G.
, and
Cheng
,
P.
,
2004
,
“Effects of Interface Wettability on Microscale Flow by Molecular Dynamics Simulation,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
501
513
.10.1016/j.ijheatmasstransfer.2003.07.013
64.
Ohara
,
T.
, and
Suzuki
,
D.
,
2000
,
“Intermolecular Energy Transfer at a Solid-Liquid Interface,”
Microscale Thermophys. Eng.
,
4
(
3
), pp.
189
196
.10.1080/108939500300005386
65.
Priezjev
,
N. V.
,
2007
,
“Rate-Dependent Slip Boundary Conditions for Simple Fluids,”
Phys. Rev. E
,
75
(
5
), p. 051605.10.1103/PhysRevE.75.051605
66.
Spijker
,
P.
,
ten Eikelder
,
H. M. M.
,
Markvoort
,
A. J.
,
Nedea
,
S. V.
, and
Hilbers
,
P. A. J.
,
2008
, “
Implicit Particle Wall Boundary Condition in Molecular Dynamics
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
222
(
5
), pp.
855
864
.10.1243/09544062JMES713
67.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
,
“A General Boundary Condition for Liquid Flow at Solid Surfaces,”
Nature
,
389
(
6649
), pp.
360
362
.10.1038/39475
68.
Voronov
,
R. S.
,
Papavassiliou
,
D. V.
, and
Lee
,
L. L.
,
2006
,
“Boundary Slip and Wetting Properties of Interfaces: Correlation of the Contact Angle With the Slip Length,”
J. Chem. Phys.
,
124
(
20
), p. 204701.10.1063/1.2194019
69.
Wemhoff
,
A. P.
, and
Carey
,
V. P.
,
2005
,
“Molecular Dynamics Exploration of Thin Liquid Films on Solid Surfaces. 1. Monatomic Fluid Films,”
Microscale Thermophys. Eng.
,
9
(
4
), pp.
331
349
.10.1080/10893950500357814
70.
Xu
,
J.
, and
Li
,
Y.
,
2007
,
“Boundary Conditions at the Solid-Liquid Surface Over the Multiscale Channel Size From Nanometer to Micron,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2571
2581
.10.1016/j.ijheatmasstransfer.2006.11.031
71.
Xu
,
J. L.
, and
Zhou
,
Z. Q.
,
2004
,
“Molecular Dynamics Simulation of Liquid Argon Flow at Platinum Surfaces,”
J. Heat Mass Transfer
,
40
(
11
), pp.
859
869
.10.1007/s00231-003-0483-3
72.
Yang
,
S. C.
,
2006
,
“Effects of Surface Roughness and Interface Wettability on Nanoscale Flow in a Nanochannel,”
Microfluidics Nanofluidics
,
2
(
6
), pp.
501
511
.10.1007/s10404-006-0096-5
73.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
,
2002
,
“Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2087
2100
.10.1016/S0017-9310(01)00310-6
74.
Ziarani
,
A. S.
, and
Mohamad
,
A. A.
,
2008
,
“Effect of Wall Roughness on the Slip of Fluid in a Microchannel,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
2
), pp.
154
169
.10.1080/15567260802171929
75.
Maroo
,
S.
, and
Chung
,
J.
,
2010
,
“A Novel Fluid–Wall Heat Transfer Model for Molecular Dynamics Simulations,”
J. Nanoparticle Res.
,
12
(
5
), pp.
1913
1924
.10.1007/s11051-009-9755-2
76.
Wu
,
Y. W.
, and
Pan
,
C.
,
2006
,
“Molecular Dynamics Simulation of Thin Film Evaporation of Lennard-Jones Liquid,”
Nanoscale Microscale Thermophys. Eng.
,
10
(2), pp.
157
170
.10.1080/10893950600643030
77.
Butt
,
H.-J.
,
Cappella
,
B.
, and
Kappl
,
M.
,
2005
,
“Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications,”
Surf. Sci. Rep.
,
59
(
1–6
), pp.
1
152
.10.1016/j.surfrep.2005.08.003
78.
Israelachvilli
,
J.
,
1994
,
Intermolecular & Surface Forces
,
Academic
,
New York
.
79.
Puli
,
U.
, and
Anil Kumar
,
R.
,
2012
,
“Parametric Effect of Pressure on Bubble Size Distribution in Subcooled Flow Boiling of Water in a Horizontal Annulus,”
Exp. Thermal Fluid Sci.
,
37
, pp.
164
170
.10.1016/j.expthermflusci.2011.11.001
80.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2010
,
“Heat Transfer Characteristics and Pressure Variation in a Nanoscale Evaporating Meniscus,”
Int, J. Heat and Mass Transfer
,
53
(
15–16
), pp.
3335
3345
.10.1016/j.ijheatmasstransfer.2010.02.030
81.
Angell
,
C. A.
,
1988
,
“Approaching the Limits,”
Nature
,
331
, pp.
206
–207.10.1038/331206a0
82.
Briggs
,
L. J.
,
1955
,
“Maximum Superheating of Water as a Measure of Negative Pressure,”
J. Appl. Phys.
,
26
(8), pp.
1001
–1003.10.1063/1.1722122
83.
Kohonen
,
M. M.
, and
Christenson
,
H. K.
,
2000
,
“Capillary Condensation of Water Between Rinsed Mica Surfaces,”
Langmuir
,
16
, pp.
7285
7288
.10.1021/la991404b
84.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2008
,
“Phase Behavior of Capillary Bridges: Towards Nanoscale Water Phase Diagram,”
Phys. Chem. Chem. Phys.
,
10
(16), pp.
2137
–2144.10.1039/b801119m
85.
Tas
,
N. R.
,
Mela
,
P.
,
Kramer
,
T.
,
Berenschot
,
J. W.
, and
Van Den Berg
,
A.
,
2003
,
“Capillarity Induced Negative Pressure of Water Plugs in Nanochannels,”
Nano. Lett.
,
3
(11), pp.
1537
1540
.10.1021/nl034676e
86.
Tyree
,
M. T.
,
2003
,
“Plant Hydraulics: The Ascent of Water,”
Nature
,
423
, p.
923
.10.1038/423923a
87.
Yang
,
S. H.
,
Nosonovsky
,
M.
,
Zhang
,
H.
, and
Chung
,
K. H.
,
2008
,
“Nanoscale Water Capillary Bridges Under Deeply Negative Pressure,”
Chem. Phys. Lett.
,
451
(1–3), pp.
88
92
.10.1016/j.cplett.2007.11.068
88.
Zhang
,
R.
,
Ikoma
,
Y.
, and
Motooka
,
T.
,
2010
,
“Negative Capillary-Pressure-Induced Cavitation Probability in Nanochannels,”
Nanotechnology
,
21
(10), p.
105706
.10.1088/0957-4484/21/10/105706
89.
Carey
,
V. P.
, and
Wemhoff
,
A. P.
,
2006
,
“Disjoining Pressure Effects in Ultra-Thin Liquid Films in Micropassages—Comparison of Thermodynamic Theory With Predictions of Molecular Dynamics Simulations,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1276
1284
.10.1115/1.2349504
90.
Maroo
,
S.
, and
Chung
,
J. N.
,
2011
,
“Negative Pressure Characteristics of an Evaporating Meniscus at Nanoscale,”
Nanoscale Res. Lett.
,
6
(
1
), p.
72
.10.1186/1556-276X-6-72
91.
Moore
,
F. D.
, and
Mesler
,
R. B.
,
1961
,
“The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water,”
AIChE J.
,
7
(
4
), pp.
620
624
.10.1002/aic.690070418
92.
Kunkelmann
,
C.
,
Ibrahem
,
K.
,
Schweizer
,
N.
,
Herbert
,
S.
,
Stephan
,
P.
, and
Gambaryan-Roisman
,
T.
,
2012
,
“The Effect of Three-Phase Contact Line Speed on Local Evaporative Heat Transfer: Experimental and Numerical Investigations,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
1896
1904
.10.1016/j.ijheatmasstransfer.2011.11.044
93.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2010
, “
Effect of Nano-Structured Surface on Meniscus Evaporation at Nanoscale
,”
ASME
Conf. Proc., Washington, DC, Aug. 8–13, Vol. 3, pp.
877
883
.10.1115/IHTC14-23306
You do not currently have access to this content.