Intramolecular energy transfer in polymer molecules plays a dominant role in heat conduction in polymer materials. In soft matter where polymer molecules form an ordered structure, the intramolecular energy transfer works in an anisotropic manner, which results in an anisotropic thermal conductivity. Based on this idea, thermal energy transfer in lipid bilayers, a typical example of soft matter, has been analyzed in the present study. Nonequilibrium molecular dynamics simulations were carried out on single component lipid bilayers with ambient water. In the simulations, dipalmitoyl-phosphatidyl-choline (DPPC), dilauroyl-phosphatidyl-choline (DLPC), and stearoyl-myristoyl-phosphatidyl-choline (SMPC), which have two alkyl chains with 16 C atoms for each, 12 C atoms for each, and 18 and 14 C atoms, respectively, were used as lipid molecules. The thermal energy transfer has been decomposed to inter- and intramolecular energy transfer between individual molecules or molecular sites, and its characteristics were discussed. In the case of heat conduction in the direction across the membranes (cross-plane heat conduction), the highest thermal resistance exists at the center of the lipid bilayer, where lipid alkyl chains face each other. The asymmetric chain length of SMPC reduces this thermal resistance at the interface between lipid monolayers. The cross-plane thermal conductivities of lipid monolayers are 4.8–6.5 times as high as the ones in the direction parallel to the membranes (in-plane) for the cases of the tested lipids. The overall cross-plane thermal conductivities of the lipid bilayers are reduced to be approximately half of those of the monolayers, due to the thermal resistance at the interfaces between two monolayers. The lipid bilayer of SMPC with tail chains of asymmetric length exhibits the highest cross-plane thermal conductivity. These results provide detailed information about the transport characteristics of thermal energy in soft matter, which are new materials with design flexibility and biocompatibility. The results lead to their design to realize desired thermophysical properties and functions.

References

1.
Cheng
,
L.
, and
Cao
,
D.
,
2011
, “
Aggregation of Polymer-Grafted Nanoparticles in Good Solvents: A Hierarchical Modeling Method
,”
J. Chem. Phys.
,
135
(
12
), p.
124703
.10.1063/1.3638176
2.
Xu
,
F.
,
Geiger
,
J. H.
,
Baker
,
G. L.
, and
Bruening
,
M. L.
,
2011
, “
Polymer Brush-Modified Magnetic Nanoparticles for His-Tagged Protein Purification
,”
Langmuir
,
27
(
6
), pp.
3106
3112
.10.1021/la1050404
3.
Kreer
,
T.
, and
Muser
,
M. H.
,
2003
, “
On the Tribology and Rheology of Polymer Brushes in Good Solvent Conditions: a Molecular Dynamics Study
,”
Wear
,
254
(
9
), pp.
827
831
.10.1016/S0043-1648(03)00232-1
4.
Lu
,
Z.
,
Prouty
,
M. D.
,
Guo
,
Z.
,
Golub
,
V. O.
,
Kumar
,
C. S. S. R.
, and
Lvov
,
Y. M.
,
2005
, “
Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded With Co@Au Nanoparticles
,”
Langmuir
,
21
(
5
), pp.
2042
2050
.10.1021/la047629q
5.
Moyano
,
D. F.
, and
Rotello
,
V. M.
,
2011
, “
Nano Meets Biology: Structure and Function at the Nanoparticle Interface
,”
Langmuir
,
27
(
17
), pp.
10376
10385
.10.1021/la2004535
6.
Ariga
,
K.
,
Hill
,
J. P.
, and
Ji
,
Q.
,
2007
, “
Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application
,”
Phys. Chem. Chem. Phys.
,
9
(
19
), pp.
2319
2340
.10.1039/b700410a
7.
Ohara
,
T.
,
1999
, “
Intermolecular Energy Transfer in Liquid Water and Its Contribution to Heat Conduction: A Molecular Dynamics Study
,”
J. Chem. Phys.
,
111
(
14
), pp.
6492
6500
.10.1063/1.480025
8.
Ohara
,
T.
,
1999
, “
Contribution of Intermolecular Energy Transfer to Heat Conduction in a Simple Liquid
,”
J. Chem. Phys.
,
111
(
14
), pp.
9667
9672
.10.1063/1.480338
9.
Ohara
,
T.
, and
Suzuki
,
D.
,
2000
, “
Intermolecular Energy Transfer at a Solid-Liquid Interface
,”
Microscale Thermophys. Eng.
,
4
(
3
), pp.
189
196
.10.1080/108939500300005386
10.
Ohara
,
T.
, and
Torii
,
D.
,
2005
, “
Molecular Dynamics Study of Thermal Phenomena in an Ultra-Thin Liquid Film Sheared Between Solid Surfaces: The Influence of the Crystal Plane on Energy and Momentum Transfer at Solid-Liquid Interfaces
,”
J. Chem. Phys.
,
122
(
21
), p.
214717
.10.1063/1.1902950
11.
Torii
,
D.
, and
Ohara
,
T.
,
2007
, “
Molecular Dynamics Study on Ultra-Thin Liquid Water Film Sheared Between Platinum Solid Walls: Liquid Structure and Energy and Momentum Transfer
,”
J. Chem. Phys.
,
126
(
15
), p.
154706
.10.1063/1.2719699
12.
Torii
,
D.
,
Ohara
,
T.
, and
Ishida
,
K.
,
2010
, “
Molecular-Scale Mechanism of Thermal Resistance at Solid-Liquid Interfaces: Influences of Interaction Parameters Between Solid and Liquid Molecules
,”
ASME J. Heat Transfer
,
132
(
1
), p.
012402
.10.1115/1.3211856
13.
Torii
,
D.
,
Nakano
,
T.
, and
Ohara
,
T.
,
2008
, “
Contribution of Inter- and Intramolecular Energy Transfers to Heat Conduction in Liquids
,”
J. Chem. Phys.
,
128
(
4
), p.
044504
.10.1063/1.2821963
14.
Ohara
,
T.
,
Tan
,
C. Y.
,
Torii
,
D.
,
Kikugawa
,
G.
, and
Kosugi
,
N.
,
2011
, “
Heat Conduction in Chain Polymer Liquids: Molecular Dynamics Study on the Contributions of Inter- and Intramolecular Energy Transfer
,”
J. Chem. Phys.
,
135
(
3
), p.
034507
.10.1063/1.3613648
15.
Antonenko
,
Y. N.
,
Pohl
,
P.
, and
Denisov
,
G. A.
,
1997
, “
Permeation of Ammonia Across Bilayer Lipid Membranes Studied by Ammonium Ion Selective Microelectrodes
,”
Biophys. J.
,
72
(
5
), pp.
2187
2195
.10.1016/S0006-3495(97)78862-3
16.
Gurtovenko
,
A. A.
, and
Vattulainen
,
I.
,
2005
, “
Pore Formation Coupled to Ion Transport Through Lipid Membranes as Induced by Transmembrane Ionic Charge Imbalance: Atomistic Molecular Dynamics Study
,”
J. Am. Chem. Soc.
,
127
(
50
), pp.
17570
17571
.10.1021/ja053129n
17.
Sugii
,
T.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2005
, “
A Molecular-Dynamics Study of Lipid Bilayers: Effects of the Hydrocarbon Chain Length on Permeability
,”
J. Chem. Phys.
,
123
(
18
), p.
184714
.10.1063/1.2102900
18.
Gurtovenko
,
A. A.
,
2005
, “
Asymmetry of Lipid Bilayers Induced by Monovalent Salt: Atomistic Molecular-Dynamics Study
,”
J. Chem. Phys.
,
122
(
24
), p.
244902
.10.1063/1.1942489
19.
Mathai
,
J. C.
,
Tristram-Nagle
,
S.
,
Nagle
,
J. F.
, and
Zeidel
,
M. L.
,
2007
, “
Structural Determinants of Water Permeability Through the Lipid Membrane
,”
J. Gen. Physiol.
,
131
(
1
), pp.
69
76
.10.1085/jgp.200709848
20.
Tieleman
,
D. P.
,
Leontiadou
,
H.
,
Mark
,
A. E.
, and
Marrink
,
S. J.
,
2003
, “
Simulation of Pore Formation in Lipid Bilayers by Mechanical Stress and Electric Fields
,”
J. Am. Chem. Soc.
,
125
(
21
), pp.
6382
6383
.10.1021/ja029504i
21.
Leontiadou
,
H.
,
Mark
,
A. E.
, and
Marrink
,
S. J.
,
2004
, “
Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers
,”
Biophys. J.
,
86
(
4
), pp.
2156
2164
.10.1016/S0006-3495(04)74275-7
22.
Tepper
,
H. L.
, and
Voth
,
G. A.
,
2005
, “
Protons May Leak Through Pure Lipid Bilayers via a Concerted Mechanism
,”
Biophys. J.
,
88
(
5
), pp.
3095
3108
.10.1529/biophysj.104.056184
23.
Knecht
,
V.
, and
Marrink
,
S. J.
,
2007
, “
Molecular Dynamics Simulations of Lipid Vesicle Fusion in Atomic Detail
,”
Biophys. J.
,
92
(
12
), pp.
4254
4261
.10.1529/biophysj.106.103572
24.
Yang
,
L.
, and
Huang
,
H. W.
,
2002
, “
Observation of a Membrane Fusion Intermediate Structure
,”
Science
,
297
(
5588
), pp.
1877
1879
.10.1126/science.1074354
25.
Marrink
,
S. J.
,
Lindahl
,
E.
,
Edholm
,
O.
, and
Mark
,
A. E.
,
2001
, “
Simulation of the Spontaneous Aggregation of Phospholipids Into Bilayers
,”
J. Am. Chem. Soc.
,
123
(
35
), pp.
8638
8639
.10.1021/ja0159618
26.
Becker
,
S. M.
, and
Kuznetsov
,
A. V.
,
2007
, “
Numerical Assessment of Thermal Response Associated With In Vivo Skin Electroporation: The Importance of the Composite Skin Model
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
330
340
.10.1115/1.2720910
27.
Becker
,
S. M.
, and
Kuznetsov
,
A. V.
,
2007
, “
Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
712
721
.10.1115/1.2768380
28.
Oudenaarden
,
A.
, and
Boxer
,
S. G.
,
1999
, “
Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays
,”
Science
,
285
(
5430
), pp.
1046
1048
.10.1126/science.285.5430.1046
29.
Nabika
,
H.
,
Sasaki
,
A.
,
Takimoto
,
B.
,
Sawai
,
Y.
,
He
,
S.
, and
Murakoshi
,
K.
,
2005
, “
Controlling Molecular Diffusion in Self-Spreading Lipid Bilayer Using Periodic Array of Ultra-Small Metallic Architecture on Solid Surface
,”
J. Am. Chem. Soc.
,
127
(
48
), pp.
16786
16787
.10.1021/ja0559597
30.
Takimoto
,
B.
,
Nabika
,
H.
, and
Murakoshi
,
K.
,
2009
, “
Single Molecular Observation of Hop Diffusion in a Lipid Bilayer at Metallic Nanogates
,”
J. Phys. Chem. C
,
113
(
8
), pp.
3127
3132
.10.1021/jp808681d
31.
Nabika
,
H.
,
Iijima
,
N.
,
Takimoto
,
B.
,
Ueno
,
K.
,
Misawa
,
H.
, and
Murakoshi
,
K.
,
2009
, “
Segregation of Molecules in Lipid Bilayer Spreading Through Metal Nanogates
,”
Anal. Chem.
,
81
(
2
), pp.
699
704
.10.1021/ac802130e
32.
Nakano
,
T.
,
Kikugawa
,
G.
, and
Ohara
,
T.
,
2010
, “
A Molecular Dynamics Study on Heat Conduction Characteristics in DPPC Lipid Bilayer
,”
J. Chem. Phys.
,
133
(
15
), p.
154705
.10.1063/1.3481650
33.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), pp.
3684
3690
.10.1063/1.448118
34.
Zhang
,
Y.
,
Feller
,
S. E.
,
Brooks
,
B. R.
, and
Pastor
,
R. W.
,
1995
, “
Computer Simulation of Liquid/Liquid Interfaces. I. Theory and Application to Octane/Water
,”
J. Chem. Phys.
,
103
(
23
), pp.
10252
10266
.10.1063/1.469927
35.
Feller
,
S. E.
,
Zhang
,
Y.
, and
Pastor
,
R. W.
,
1995
, “
Computer Simulation of Liquid/Liquid Interfaces. II. Surface Tension-Area Dependence of a Bilayer and Monolayer
,”
J. Chem. Phys.
,
103
(
23
), pp.
10267
10276
.10.1063/1.469928
36.
Smondyrev
,
A.
, and
Berkowitz
,
M.
,
1999
, “
United Atom Force Field for Phospholipid Membranes: Constant Pressure Molecular Dynamics Simulation of Dipalmitoylphosphatidicholine/Water System
,”
J. Comput. Chem.
,
20
(
5
), pp.
531
545
.10.1002/(SICI)1096-987X(19990415)20:5<531::AID-JCC5>3.0.CO;2-3
37.
Jorgensen
,
W. L.
,
Chandrasekhar
,
J.
,
Madura
,
J. D.
,
Impey
,
R. W.
, and
Klein
,
M. L.
,
1983
, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
J. Chem. Phys.
,
79
(
2
), pp.
926
935
.10.1063/1.445869
38.
Essmann
,
U.
,
Perera
,
L.
,
Berkowitz
,
M.
,
Darden
,
T.
,
Lee
,
H.
, and
Pedersen
,
L.
,
1995
, “
A Smooth Particle Mesh Ewald Method
,”
J. Chem. Phys.
,
103
(
19
), pp.
8577
8593
.10.1063/1.470117
39.
Tuckerman
,
M.
,
Berne
,
B. J.
, and
Martyna
,
G. J.
,
1992
, “
Reversible Multiple Time Scale Molecular Dynamics
,”
J. Chem. Phys.
,
97
(
3
), pp.
1990
2001
.10.1063/1.463137
40.
Omelyan
,
I. P.
,
1998
, “
On the Numerical Integration of Motion for Rigid Polyatomics: The Modified Quaternion Approach
,”
Comput. Phys.
,
12
(
1
), pp.
97
103
.10.1063/1.168642
41.
Martys
,
N. S.
, and
Mountain
,
R. D.
,
1999
, “
Velocity Verlet Algorithm for Dissipative-Particle-Dynamics-Based Models of Suspensions
,”
Phys. Rev. E
,
59
(
3
), pp.
3733
3736
.10.1103/PhysRevE.59.3733
42.
Jund
,
P.
, and
Jullien
,
R.
,
1999
, “
Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica
,”
Phys. Rev. B
,
59
(
21
), pp.
13707
13711
.10.1103/PhysRevB.59.13707
43.
Høyrup
,
P.
,
Mouritsen
,
O. G.
, and
Jørgensen
,
K.
,
2001
, “
Phospholipase A2 Activity Towards Vesicles of DPPC and DMPC-DSPC Containing Small Amounts of SMPC
,”
Biochim. Biophys. Acta
,
1515
(
2
), pp.
133
143
.10.1016/S0005-2736(01)00407-2
44.
Fernandez-Puente
,
L.
,
Bivas
,
I.
,
Mitov
,
M. D.
, and
Méléard
,
P.
,
1994
, “
Temperature and Chain Length Effects on Bending Elasticity of Phosphatidylcholine Bilayers
,”
Europhys. Lett.
,
28
(
3
), pp.
181
186
.10.1209/0295-5075/28/3/005
45.
Patel
,
H.
,
Garde
,
S.
, and
Keblinski
,
P.
,
2005
, “
Thermal Resistance of Nanoscopic Liquid-Liquid Interfaces: Dependence on Chemistry and Molecular Architecture
,”
Nano Lett.
,
5
(
11
), pp.
2225
2231
.10.1021/nl051526q
46.
Wang
,
Z.
,
Carter
,
J.
,
Lagutchev
,
J. A.
,
Koh
,
Y. K.
,
Seong
,
N. H.
,
Cahill
,
D. G.
, and
Dlott
,
D. D.
,
2007
, “
Ultrafast Flash Thermal Conductance of Molecular Chains
,”
Science
,
317
(
5839
), pp.
787
790
.10.1126/science.1145220
47.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibres With Very High Thermal Conductivities
,”
Nature Nano.
,
5
(
4
), pp.
251
255
.10.1038/nnano.2010.27
You do not currently have access to this content.