Sintered porous structures are ubiquitous as heat transport media for thermal management and other applications. In particular, low-porosity sintered packed beds are used as capillary-wicking and evaporation-enhancement structures in heat pipes. Accurate prediction and analysis of their transport characteristics for different microstructure geometries is important for improved design. Owing to the random nature and geometric complexity of these materials, development of predictive methods has been the subject of extensive prior research. The present work summarizes and builds upon past studies and recent advances in pore-scale modeling of fluid and thermal transport within such heterogeneous media. A brief review of various analytical and numerical models for simplified prediction of transport characteristics such as effective thermal conductivity, permeability, and interfacial heat transfer is presented. More recently, there has been a growing interest in direct numerical simulation of transport in realistic representations of the porous medium geometry; for example, by employing nondestructive 3D imaging techniques such as X-ray microtomography. Future research directions are identified, looking beyond techniques intended for material characterization alone, and focusing on those targeting the reverse engineering of wick structures via modeling of the physical sintering fabrication processes. This approach may eventually be employed to design intricate sintered porous structures with desired properties tailored to specific applications.

References

1.
Kaviany
,
M.
,
2002
,
Principles of Heat Transfer
,
Wiley-Interscience
,
New York
.
2.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2010.05.043
3.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Optimization Under Uncertainty for Electronics Cooling Design Applications
,” Proceedings of the 13th
IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, pp.
1191
1201
.10.1109/ITHERM.2012.6231558
4.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Ann. Rev. Heat Transfer
,
13
, pp.
1
50
.
5.
Garimella
,
S. V.
,
2000
, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Ann. Rev. Heat Transfer
,
11
, pp.
413
494
.
6.
Garimella
,
S. V.
,
Joshi
,
Y. K.
,
Bar-Cohen
,
A.
,
Mahajan
,
R.
,
Toh
,
K. C.
,
Carey
,
V. P.
,
Baelmans
,
M.
,
Lohan
,
J.
,
Sammakia
,
B.
, and
Andros
,
F.
,
2003
, “
Thermal Challenges in Next Generation Electronic Systems-Summary of Panel Presentations and Discussions
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
569
575
.10.1109/TCAPT.2003.809113
7.
Dewan
,
A.
,
Mahanta
,
P.
,
Raju
,
K. S.
, and
Kumar
,
P. S.
,
2004
, “
Review of Passive Heat Transfer Augmentation Techniques
,”
Proc. IMechE, Part A
,
218
(
7
), pp.
509
527
.10.1243/0957650042456953
8.
Vafai
,
K.
,
2005
,
Handbook of Porous Media
,
CRC Press
,
Boca Raton, FL
.
9.
Li
,
C.
, and
Peterson
,
G. P.
,
2006
, “
Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1320
1328
.10.1115/1.2349508
10.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
11.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes—Modeling, Testing, and Applications
,
John Wiley & Sons
,
New York
.
12.
Lin
,
Y.-Y.
,
Semenic
,
T.
, and
Catton
,
I.
,
2005
, “
Thermophysical Properties of Biporous Sintered Copper
,” Proceedings of the
ASME
Mechanical Engineering Congress and Exposition
, Orlando, FL, pp.
785
791
. 10.1115/IMECE2005-82190
13.
Semenic
,
T.
, and
Catton
,
I.
,
2009
, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
(
21
), pp.
5113
5121
.10.1016/j.ijheatmasstransfer.2009.05.005
14.
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2012
, “
Visualization of Vapor Formation Regimes During Capillary-Fed Boiling in Sintered-Powder Heat Pipe Wicks
,”
Int. J. Heat Mass Transfer
,
55
(
13
), pp.
3498
3510
.10.1016/j.ijheatmasstransfer.2012.03.021
15.
Ingham
,
D. B.
,
Bejan
,
A.
,
Mamut
,
E.
, and
Pop
,
I.
,
2003
,
Emerging Technologies and Techniques in Porous Media
,
Kluwer Academic Publishers
,
London
.
16.
Vadász
,
P.
,
2008
,
Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microelectronics to Nanotechnology
,
Springer
,
New York
.
17.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
(
7
), pp.
527
544
.10.1080/10407782.2010.511987
18.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.10.1115/1.2227038
19.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.10.1115/1.2010494
20.
Carson
,
J. K.
,
Lovatt
,
S. J.
,
Tanner
,
D. J.
, and
Cleland
,
A. C.
,
2005
, “
Thermal Conductivity Bounds for Isotropic Porous Materials
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2150
2158
.10.1016/j.ijheatmasstransfer.2004.12.032
21.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Direct Simulation of Thermal Transport Through Sintered Wick Microstructures
,”
ASME J. Heat Transfer
,
134
(
1
), p.
012602
.10.1115/1.4004804
22.
Nozad
,
I.
,
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1985
, “
Heat Conduction in Multiphase Systems—I: Theory and Experiment for Two-Phase Systems
,”
Chem. Eng. Sci.
,
40
(
5
), pp.
843
855
.10.1016/0009-2509(85)85037-5
23.
Prasad
,
V.
,
Kladias
,
N.
,
Bandyopadhaya
,
A.
, and
Tian
,
Q.
,
1989
, “
Evaluation of Correlations for Stagnant Thermal Conductivity of Liquid-Saturated Porous beds of Spheres
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1793
1796
.10.1016/0017-9310(89)90061-6
24.
Alexander
,
E. G.
,
1972
, “
Structure-Property Relationships in Heat Pipe Wicking Materials
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
25.
Atabaki
,
N.
, and
Baliga
,
B. R.
,
2007
, “
Effective Thermal Conductivity of Water-Saturated Sintered Powder-Metal Plates
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
85
99
.10.1007/s00231-007-0229-8
26.
Hadley
,
G. R.
,
1986
, “
Thermal Conductivity of Packed Metal Powders
,”
Int. J. Heat Mass Transfer
,
29
(
6
), pp.
909
920
.10.1016/0017-9310(86)90186-9
27.
Peterson
,
G. P.
,
Fletcher
,
L. S.
,
Raghunathan
,
S. R.
,
Gillan
,
M. A.
, and
Mitchell
,
R. D.
,
1987
, “
Effective Thermal Conductivity of Sintered Heat Pipe Wicks
,”
J. Thermophys. Heat Transfer
,
1
(
4
), pp.
343
347
.10.2514/3.50
28.
Macdonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media—The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.10.1021/i160071a001
29.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science
,
New York
.
30.
Iverson
,
B. D.
,
Davis
,
T. W.
,
Garimella
,
S. V.
,
North
,
M. T.
, and
Kang
,
S. S.
,
2007
, “
Heat and Mass Transport in Heat Pipe Wick Structures
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
392
404
.10.2514/1.25809
31.
Davis
,
T. W.
, and
Garimella
,
S. V.
,
2008
, “
Thermal Resistance Measurement Across a Wick Structure Using a Novel Thermosyphon Test Chamber
,”
Exp. Heat Transfer
,
21
(
2
), pp.
143
154
.10.1080/08916150701815853
32.
Migliaccio
,
C. P.
, and
Garimella
,
S. V.
,
2011
, “
Evaporative Heat and Mass Transfer From the Free Surface of a Liquid Wicked Into a Bed of Spheres
,”
Int. J. Heat Mass Transfer
,
54
(
15
), pp.
3440
3447
.10.1016/j.ijheatmasstransfer.2011.03.042
33.
Hanlon
,
M. A.
, and
Ma
,
H. B.
,
2003
, “
Evaporation Heat Transfer in Sintered Porous Media
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
644
652
.10.1115/1.1560145
34.
Adkins
,
D. R.
, and
Dykhuizen
,
R. C.
,
1993
,
Procedures for Measuring the Properties of Heat-Pipe Wick Materials
,
Sandia National Labs
,
Albuquerque, NM
.
35.
Imura
,
H.
,
Kozai
,
H.
, and
Ikeda
,
Y.
,
1994
, “
The Effective Pore Radius of Screen Wicks
,”
Heat Transfer Eng.
,
15
(
4
), pp.
24
32
.10.1080/01457639408939834
36.
Lin
,
Y.-Y.
,
Semenic
,
T.
, and
Catton
,
I.
,
2005
, “
Thermophysical Properties of Monoporous Sintered Copper
,” Proceedings of the
ASME
Summer Heat Transfer Conference
, San Francisco, CA, pp.
17
23
.10.1115/HT2005-72239
37.
Holley
,
B.
, and
Faghri
,
A.
,
2006
, “
Permeability and Effective Pore Radius Measurements for Heat Pipe and Fuel Cell Applications
,”
Appl. Therm. Eng.
,
26
(
4
), pp.
448
462
.10.1016/j.applthermaleng.2005.05.023
38.
Katz
,
A. J.
, and
Thompson
,
A. H.
,
1985
, “
Fractal Sandstone Pores: Implications for Conductivity and Pore Formation
,”
Phys. Rev. Lett.
,
54
(
12
), pp.
1325
1328
.10.1103/PhysRevLett.54.1325
39.
Tyler
,
S. W.
, and
Wheatcraft
,
S. W.
,
1989
, “
Application of Fractal Mathematics to Soil Water Retention Estimation
,”
J. Soil Sci. Soc. Am.
,
53
(
4
), pp.
987
996
.10.2136/sssaj1989.03615995005300040001x
40.
Majumdar
,
A.
,
1992
, “
Role of Fractal Geometry in the Study of Thermal Phenomena
,”
Ann. Rev. Heat Transfer
,
4
(
4
), pp.
51
110
.
41.
Kitaoka
,
H.
,
Takaki
,
R.
, and
Suki
,
B.
,
1999
, “
A Three-Dimensional Model of the Human Airway Tree
,”
J. Appl. Physiol.
,
87
(
6
), pp.
2207
2217
.
42.
Yu
,
B.
,
2008
, “
Analysis of Flow in Fractal Porous Media
,”
ASME Appl. Mech. Rev.
,
61
(
5
), p.
050801
.10.1115/1.2955849
43.
Ma
,
Y.
,
Yu
,
B.
,
Zhang
,
D.
, and
Zou
,
M.
,
2003
, “
A Self-Similarity Model for Effective Thermal Conductivity of Porous Media
,”
J. Phys. D: Appl. Phys.
,
36
(
17
), pp.
2157
2164
.10.1088/0022-3727/36/17/321
44.
Ma
,
Y.
,
Yu
,
B.
,
Zhang
,
D.
, and
Zou
,
M.
,
2004
, “
Fractal Geometry Model for Effective Thermal Conductivity of Three-Phase Porous Media
,”
J. Appl. Phys.
,
95
(
11
), pp.
6426
6434
.10.1063/1.1703820
45.
Yu
,
B.
,
Lee
,
L. J.
, and
Cao
,
H.
,
2002
, “
A Fractal In-Plane Permeability Model for Fabrics
,”
J. Polym. Compos.
,
23
(
2
), pp.
201
221
.10.1002/pc.10426
46.
Yu
,
B.
, and
Cheng
,
P.
,
2002
, “
A Fractal Permeability Model for Bi-Dispersed Porous Media
,”
Int. J. Heat Mass Transfer
,
45
(
14
), pp.
2983
2993
.10.1016/S0017-9310(02)00014-5
47.
Xu
,
P.
, and
Yu
,
B.
,
2008
, “
Developing a New Form of Permeability and Kozeny–Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry
,”
Adv. Water Resour.
,
31
(
1
), pp.
74
81
.10.1016/j.advwatres.2007.06.003
48.
Vadakkan
,
U.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2004
, “
Transport in Flat Heat Pipes at High Heat Fluxes From Multiple Discrete Sources
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
347
354
.10.1115/1.1737773
49.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
, and
Vadakkan
,
U.
,
2011
, “
A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
153
168
.10.1016/j.ijheatmasstransfer.2010.09.057
50.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
London
.
51.
Domínguez Espinosa
,
F. A.
,
2011
, “
Effect of Fabrication Parameters on Thermophysical Properties of Sintered Wicks
,” M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA.
52.
Ranjan
,
R.
,
Patel
,
A.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2011
, “
Wicking and Thermal Characteristics of Micropillared Structures for Use in Passive Heat Spreaders
,”
Int. J. Heat Mass Transfer
,
55
, pp.
586
596
.10.1016/j.ijheatmasstransfer.2011.10.053
53.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2009
, “
Analysis of the Wicking and Thin-Film Evaporation Characteristics of Microstructures
,”
ASME J. Heat Transfer
,
131
(10)
, p.
101001
.10.1115/1.3160538
54.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
55.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2011
, “
A Microscale Model for Thin-Film Evaporation in Capillary Wick Structures
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
169
179
.10.1016/j.ijheatmasstransfer.2010.09.037
56.
Dhavaleswarapu
,
H. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2009
, “
Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film
,”
ASME J. Heat Transfer
,
131
(6)
, p.
061501
.10.1115/1.3090525
57.
Migliaccio
,
C. P.
,
Dhavaleswarapu
,
H. K.
, and
Garimella
,
S. V.
,
2011
, “
Temperature Measurements Near the Contact Line of an Evaporating Meniscus V-Groove
,”
Int. J. Heat Mass Transfer
,
54
(
7
), pp.
1520
1526
.10.1016/j.ijheatmasstransfer.2010.11.040
58.
Van Meerbeek
,
B.
,
Vargas
,
M.
,
Inoue
,
S.
,
Yoshida
,
Y.
,
Perdigao
,
J.
,
Lambrechts
,
P.
, and
Vanherle
,
G.
,
2000
, “
Microscopy Investigations: Techniques, Results, Limitations
,”
Am. J. Dent.
,
13
, pp.
3D
18D
.
59.
Giannuzzi
,
L. A.
, and
Stevie
,
F. A.
,
1999
, “
A Review of Focused Ion Beam Milling Techniques for TEM Specimen Preparation
,”
Micron
,
30
(
3
), pp.
197
204
.10.1016/S0968-4328(99)00005-0
60.
Herman
,
G. T.
,
2009
,
Fundamentals of Computerized Tomography: Image Reconstruction From Projections
,
Springer
,
New York.
61.
Feldkamp
,
L. A.
,
Davis
,
L. C.
, and
Kress
,
J. W.
,
1984
, “
Practical Cone-Beam Algorithm
,”
J. Opt. Soc. Am. A
,
1
(
6
), pp.
612
619
.10.1364/JOSAA.1.000612
62.
Stauber
,
M.
, and
Muller
,
R.
,
2008
, “
Micro-Computed Tomography: A Method for the Non-Destructive Evaluation of the Three-Dimensional Structure of Biological Specimens
,”
Methods Mol. Biol.
,
455
, pp.
273
292
.10.1007/978-1-59745-104-8
63.
Jasti
,
J.
,
Jesion
,
G.
, and
Feldkamp
,
L.
,
1990
, “
Microscopic Imaging of Porous Media Using X-ray Computer Tomography
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
New Orleans
,
LA
, pp.
27
34
.
64.
Siebert
,
J. E.
,
Petrovic
,
A. M.
, and
Rieke
,
P. E.
,
1982
, “
Soil Bulk Density Analysis in Three Dimensions by Computed Tomographic Scanning
,”
Soil Sci. Soc. Am. J.
,
46
(
3
), pp.
445
450
.10.2136/sssaj1982.03615995004600030001x
65.
Anderson
,
S. H.
,
Peyton
,
R. L.
, and
Gantzer
,
C. J.
,
1990
, “
Evaluation of Constructed and Natural Soil Macropores Using X-ray Computed Tomography
,”
Geoderma
,
46
(
1–3
), pp.
13
29
.10.1016/0016-7061(90)90004-S
66.
Givler
,
R. C.
, and
Altobelli
,
S. A.
,
1994
, “
A Determination of the Effective Viscosity for the Brinkman–Forchheimer Flow Model
,”
J. Fluid Mech.
,
258
, pp.
355
370
.10.1017/S0022112094003368
67.
Gleeson
,
J.
,
Woessner
,
D.
, and
Jordan
,
C.
, Jr
.,
1993
, “
NMR Imaging of Pore Structures in Limestones
,”
SPE Formation Eval.
,
8
(
2
), pp.
123
127
.10.2118/20493-PA
68.
Young
,
P. G.
,
Beresford-West
,
T. B.
,
Coward
,
S. R.
,
Notarberardino
,
B.
,
Walker
,
B.
, and
Abdul-Aziz
,
A.
,
2008
, “
An Efficient Approach to Converting Three-Dimensional Image Data into Highly Accurate Computational Models
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
(
1878
), pp.
3155
3173
.10.1098/rsta.2008.0090
69.
Kenesei
,
P.
,
Borbely
,
A.
, and
Biermann
,
H.
,
2004
, “
Microstructure Based Three-Dimensional Finite Element Modeling of Particulate Reinforced Metal-Matrix Composites
,”
Mater. Sci. Eng. A
,
387–389
, pp.
852
856
.10.1016/j.msea.2004.02.076
70.
Youssef
,
S.
,
Maire
,
E.
, and
Gaertner
,
R.
,
2005
, “
Finite Element Modelling of the Actual Structure of Cellular Materials Determined by X-ray Tomography
,”
Acta Mater.
,
53
(
3
), pp.
719
730
.10.1016/j.actamat.2004.10.024
71.
Watson
,
I. G.
,
Lee
,
P. D.
,
Dashwood
,
R. J.
, and
Young
,
P.
,
2006
, “
Simulation of the Mechanical Properties of an Aluminum Matrix Composite Using X-ray Microtomography
,”
Metall. Mater. Trans. A
,
37A
(
3
), pp.
551
558
.10.1007/s11661-006-0027-9
72.
Simpleware Ltd.
,
2002
,
ScanIP, ScanFE and ScanCAD Tutorial Guide for SIMPLEWARE 3.1, 2002, Simpleware Ltd., Exeter, UK
.
73.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, “
Evaporation Analysis in Sintered Wick Microstructures
,”
Int. J. Heat Mass Transfer
(to be published).
74.
ANSYS, Inc.
,
2007
,
User's Manual for ANSYS ICEM CFD 11, ANSYS Inc., Canonsburg, PA
.
75.
Souli
,
M.
, and
Zolesio
,
J. P.
,
2001
, “
Arbitrary Lagrangian–Eulerian and Free Surface Methods in Fluid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
3–5
), pp.
451
466
.10.1016/S0045-7825(01)00313-9
76.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
77.
Fluent, Inc.
,
2002
,
User's Guide for FLUENT 6.0, Fluent Inc., Lebanon, NH.
78.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
79.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interface Mass Transfer
,
Columbia University Press
,
New York
.
80.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Resistance Network-Based Thermal Conductivity Model for Metal Foams
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
622
632
.10.1016/j.commatsci.2010.09.026
81.
Garboczi
,
E. J.
, and
Bentz
,
D. P.
,
1991
, “
Fundamental Computer Simulation Models for Cement-Based Materials
,”
Mater. Sci. Concr. II, Am. Ceram. Soc.
,
3
, pp.
249
277
.
82.
Garboczi
,
E. J.
, and
Bentz
,
D. P.
,
1992
, “
Computer Simulation of the Diffusivity of Cement-Based Materials
,”
J. Mater. Sci.
,
27
(
8
), pp.
2083
2092
.10.1007/BF01117921
83.
Visscher
,
P. B.
, and
Cates
,
J. E.
,
1990
, “
Simulation of Porosity Reduction in Random Structures
,”
J. Mater. Res.
,
5
(
10
), pp.
2184
2196
.10.1557/JMR.1990.2184
84.
Srolovitz
,
D. J.
,
Anderson
,
M. P.
,
Sahni
,
P. S.
, and
Grest
,
G. S.
,
1984
, “
Computer Simulation of Grain Growth—II. Grain Size Distribution, Topology, and Local Dynamics
,”
Acta Metall.
,
32
(
5
), pp.
793
802
.10.1016/0001-6160(84)90152-4
85.
Ku
,
W.
,
Gregory
,
O. J.
, and
Jennings
,
H. M.
,
1990
, “
Computer Simulation of the Microstructure Developed in Reaction-Sintered Silicon Nitride Ceramics
,”
J. Am. Ceram. Soc.
,
73
(
2
), pp.
286
296
.10.1111/j.1151-2916.1990.tb06508.x
86.
Garboczi
,
E. J.
,
Bentz
,
D. P.
, and
Martys
,
N. S.
,
1999
, “
Digital Images and Computer Modeling
,”
Experimental Methods for Porous Media
,
Academic Press
,
New York
, pp.
1
41
.
87.
German
,
R. M.
,
1996
,
Sintering Theory and Practice
,
John Wiley & Sons
,
New York
.
88.
Wakai
,
F.
,
2006
, “
Modeling and Simulation of Elementary Processes in Ideal Sintering
,”
J. Am. Ceram. Soc.
,
89
(
5
), pp.
1471
1484
.10.1111/j.1551-2916.2006.01001.x
89.
Wakai
,
F.
, and
Aldinger
,
F.
,
2003
, “
Sintering Through Surface Motion by the Difference in Mean Curvature
,”
Acta Mater.
,
51
(
14
), pp.
4013
4024
.10.1016/S1359-6454(03)00222-2
90.
Kumar
,
V.
,
2011
, “
Simulations and Modeling of Unequal Sized Particles Sintering
,” Ph.D. thesis, University of Utah, Salt Lake City, UT.
91.
Pimienta
,
P. J. P.
,
Garboczi
,
E. J.
, and
Carter
,
W. C.
,
1992
, “
Cellular Automaton Algorithm for Surface Mass Transport Due to Curvature Gradients: Simulations of Sintering
,”
Comput. Mater. Sci.
,
1
(
1
), pp.
63
77
.10.1016/0927-0256(92)90008-W
92.
Bentz
,
D. P.
,
Pimienta
,
P. J. P.
,
Garboczi
,
E. J.
, and
Carter
,
W. C.
,
1991
, “
Cellular Automaton Simulations of Surface Mass Transport Due to Curvature Gradients: Simulations of Sintering in 3-Dimensions
,”
Synth. Process. Ceram.
,
249
, pp.
413
418
.
93.
Bodla
,
K. K.
, and
Garimella
,
S. V.
, “
Microstructural Evoluation and Transport Properties of Sintered Porous Media
,”
Proceedings of the Summer Heat Transfer Conference
, Minneapolis, MN (to be published).
You do not currently have access to this content.