Experimental determination of transport coefficients, in particular internal heat transfer coefficients, in heterogeneous and hierarchical heat transfer devices such as compact heat exchangers and high surface density heat sinks has posed a persistent challenge for designers. This study presents a unique treatment of the experimental determination of such design data. A new combined experimental and computational method for determining the internal heat transfer coefficient within a heterogeneous and hierarchical heat transfer medium is explored and results are obtained for the case of cross flow of air over staggered cylinders to provide validation of the method. Along with appropriate pressure drop measurements, these measurements allow for thermal-fluid modeling of a heat exchanger by closing the volume averaging theory (VAT)-based equations governing transport phenomena in porous media, which have been rigorously derived from the lower-scale Navier–Stokes and thermal energy equations. To experimentally obtain the internal heat transfer coefficient the solid phase is subjected to a step change in heat generation rate via induction heating, while the fluid flows through under steady flow conditions. The transient fluid phase temperature response is measured. The heat transfer coefficient is then determined by comparing the results of a numerical simulation based on the VAT model with the experimental results. The friction factor is determined through pressure drop measurements, as is usually done. With the lower-scale heat transfer coefficient and friction factor measured, the VAT-based equations governing the transport phenomena in the heat transfer device are closed and readily solved. Several configurations of staggered cylinders in cross flow were selected for this study. Results for the heat transfer coefficient and friction factor are compared to widely accepted correlations and agreement is observed, lending validation to this experimental method and analysis procedure. It is expected that a more convenient and accurate tool for experimental closure of the VAT-based equations modeling transport in heterogeneous and hierarchical media, which comes down to measuring the transport coefficients, will allow for easier modeling and subsequent optimization of high performance compact heat exchangers and heat sinks for which design data does not already exist.

References

References
1.
Catton
,
I.
,
2011
, “
Conjugate Heat Transfer Within a Heterogeneous Hierarchical Structure
,”
ASME. J. Heat Trans
.,
133
(
10
), p.
103001
.10.1115/1.4003576
2.
Anderson
,
T. B.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds. Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.10.1021/i160024a007
3.
Slattery
,
J. C.
,
1967
, “
Flow of Viscoelastic Fluids Through Porous Media
,”
AIChE J.
,
13
(
6
), pp.
1066
1071
.10.1002/aic.690130606
4.
Marle
,
C. M.
,
1967
, “
Ecoulements monophasiques en milieu poreux
,”
Rev. Inst. Francais du Petrole
,
22
, pp.
1471
1509
.
5.
Whitaker
,
S.
,
1967
, “
Diffusion and Dispersion in Porous Media
,”
AIChE J.
,
13
(
3
), pp.
420
427
.10.1002/aic.690130308
6.
Zolotarev
,
P. P.
, and
Radushkevich
,
L. V.
,
1968
, “
An Approximate Analytical Solution of the Internal Diffusion Problem of Dynamic Absorption in the Linear Region of an Isotherm
,”
Russ. Chem. Bull.
,
17
(
8
), pp.
1818
1820
.10.1007/BF01169912
7.
Slattery
,
J. C.
,
1980
,
Momentum, Energy and Mass Transfer in Continua
,
Krieger
,
Malabar, FL
.
8.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
9.
Gray
,
W. G.
,
Leijnse
,
A.
,
Kolar
,
R. L.
, and
Blain
,
C. A.
,
1993
,
Mathematical Tools for Changing Spatial Scales in the Analysis of Physical Systems
,
CRC Press
,
Boca Raton
, FL.
10.
Whitaker
,
S.
,
1977
, “
Simultaneous Heat, Mass and Momentum Transfer in Porous Media: A Theory of Drying
,”
Adv. Heat Transfer
,
13
, pp.
119
203
.10.1016/S0065-2717(08)70223-5
11.
Whitaker
,
S.
,
1997
, “
Volume Averaging of Transport Equations
,”
Int. Ser. Adv. Fluid Mech.
,
13
, pp.
1
60
.
12.
Kheifets
,
L. I.
, and
Neimark
,
A. V.
,
1982
,
Multiphase Processes in Porous Media
,
Khimia
,
Moscow
.
13.
Dullien
,
F. A. L.
,
1979
,
Porous Media Fluid Transport and Pore Structure
,
Academic Press
,
New York
.
14.
Adler
,
P. M.
,
1992
,
Porous Media: Geometry and Transports
,
Butterworth-Heinemann
,
Waltham, MA
.
15.
Travkin
,
V.
, and
Catton
,
I.
,
1992
, “
Models of Turbulent Thermal Diffusivity and Transfer Coefficients for a Regular Packed Bed of Spheres
,” Fundamentals of Heat Transfer in Porous Media, ASME HTD,
193
, pp. 15–23.
16.
Travkin
,
V.
, and
Catton
,
I.
,
1995
, “
A Two-Temperature Model for Turbulent Flow and Heat Transfer in a Porous Layer
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
181
188
.10.1115/1.2816810
17.
Travkin
,
V. S.
, and
Catton
,
I.
,
1998
, “
Porous Media Transport Descriptions—Non-Local, Linear and Non-Linear Against Effective Thermal/Fluid Properties
,”
Adv. Colloid Interface Sci.
,
76–77
, pp.
389
443
.10.1016/S0001-8686(98)00054-2
18.
Travkin
,
V. S.
,
Catton
,
I.
, and
Gratton
,
L.
,
1993
, “
Single Phase Turbulent Transport in Prescribed Non-Isotropic and Stochastic Porous Media
,” Heat Transfer in Porous Media, ASME HTD, Vol. 240, p.
43
48
.
19.
Travkin
,
V. S.
,
Catton
,
I.
,
Hu
,
K.
,
Ponomarenko
,
A. T.
, and
Shevchenko
,
V. G.
,
1999
, “
Transport Phenomena in Heterogeneous Media: Experimental Data Reduction and Analysis
,” Proc. ASME, Applied Mechanics Division, Vol.
233
, pp.
21
32
.
20.
Nakayama
,
A.
,
Ando
,
K.
,
Yang
,
C.
,
Sano
,
Y.
,
Kuwahara
,
F.
, and
Liu
,
J.
,
2009
, “
A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media
,”
Heat Mass Transfer
,
45
(
11
), pp.
1365
1372
.10.1007/s00231-009-0513-x
21.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A General Macroscopic Turbulence Model for Flows in Packed Beds, Channels, Pipes, and Rod Bundles
,”
ASME J. Fluids Eng.
,
130
(
10
), p.
101205
.10.1115/1.2969461
22.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Hayashi
,
T.
,
2004
, “
Numerical Modelling for Three-Dimensional Heat and Fluid Flow Through a Bank of Cylinders in Yaw
,”
J. Fluid Mech.
,
498
, pp.
139
159
.10.1017/S0022112003006712
23.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Kodama
,
Y.
,
2006
, “
An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium
,”
J. Fluid Mech.
,
563
(
1
), pp.
81
96
.10.1017/S0022112006001078
24.
Travkin
,
V. S.
, and
Catton
,
I.
,
2001
, “
Transport Phenomena in Heterogeneous Media Based on Volume Averaging Theory
,”
Advances in Heat Transfer
,
G. G.
Hari
and
A. H.
Charles
, eds.,
Elsevier
,
New York
, pp.
1
144
.
25.
Zhou
,
F.
,
Hansen
,
N. E.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2011
, “
Obtaining Closure for Fin-and-Tube Heat Exchanger Modeling Based on Volume Averaging Theory (VAT)
,”
ASME J. Heat Trans.
,
133
(
11
), p.
111802
.10.1115/1.4004393
26.
Zhou
,
F.
, and
Catton
,
I.
,
2012
, “
Volume Averaging Theory (VAT) Based Modeling and Closure Evaluation for Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer
, 48, pp. 1813–1823.10.1007/s00231-012-1025-7
27.
Zhou
,
F.
,
DeMoulin
,
G. W.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2012
, “
Closure for a Plane Fin Heat Sink With Scale-Roughened Surfaces for Volume Averaging Theory (VAT) Based Modeling
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7677
7685
.10.1016/j.ijheatmasstransfer.2012.07.075
28.
Horvat
,
A.
, and
Mavko
,
B.
,
2005
, “
Hierarchic Modeling of Heat Transfer Processes in Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
361
371
.10.1016/j.ijheatmasstransfer.2004.08.015
29.
Vadnjal
,
A.
,
2009
, “Modeling of a Heat Sink and High Heat Flux Vapor Chamber,” Ph.D. thesis, University of California, Los Angeles, CA.
30.
Rodriguez
,
J. I.
, and
Mills
,
A. F.
,
1990
, “
Analysis of the Single-Blow Transient Testing Technique for Perforated Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
33
, pp.
1969
1976
.
31.
Liang
,
C. Y.
, and
Yang
,
W.-J.
,
1975
, “
Modified Single-Blow Technique for Performance Evaluation on Heat Transfer Surfaces
,”
ASME J. Heat Trans.
,
97
(
1
), pp. 16–21.10.1115/1.3450280
32.
Stang
,
J. H.
, and
Bush
,
J. E.
,
1974
, “
The Periodic Method for Testing Compact Heat Exchanger Surfaces
,”
ASME J. Eng. Power
,
96
(
2
), pp. 87–94.10.1115/1.3445767
33.
Younis
,
L.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1425
1434
.10.1016/S0017-9310(05)80053-5
34.
Nie
,
X.
,
Evitts
,
R.
,
Besant
,
R.
, and
Bolster
,
J.
,
2011
, “
A New Technique to Determine Convection Coefficients With Flow Through Particle Beds
,”
ASME J. Heat Trans.
,
133
(
4
), p.
041601
.10.1115/1.4002945
35.
Krishnakumar
,
K.
,
John
,
A. K.
, and
Venkatarathnam
,
G.
,
2011
, “
A Review on Transient Test Techniques for Obtaining Heat Transfer Design Data of Compact Heat Exchanger Surfaces
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
738
743
.10.1016/j.expthermflusci.2010.12.006
36.
Geb
,
D.
,
Zhou
,
F.
, and
Catton
,
I.
,
2012
, “
Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating
,”
ASME J. Heat Trans.
,
134
(
4
), p.
042604
.10.1115/1.4005098
37.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1985
, “
Efficiency Parameters for Heat Transfer in Tube Banks
,”
Heat Transfer Eng.
,
6
(
1
), pp.
19
25
.10.1080/01457638508939614
38.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1983
, “
Banks of Plain and Finned Tubes
,”
Heat Exchanger Design Handbook
,
B. A.
Bodling
, and
M.
Prescott
, eds.,
Hemisphere Publishing Co.
,
Washington, DC
.
39.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
40.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.10.1002/aic.690180219
41.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1988
,
Heat Transfer in Tube Banks in Crossflow
, Hemisphere Publishing Corp., New York.
42.
Zukauskas
,
A.
,
1987
, “Convective Heat Transfer in Cross Flow,” Handbook of Single-Phase Convective Heat Transfer, Wiley, New York, pp. 38–41.
43.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
You do not currently have access to this content.