A theoretical answer to the controversial issue on the anomalous convective heat transfer in nanofluids has been provided, exploiting the Buongiorno model for convective heat transfer in nanofluids with modifications to fully account for the effects of nanoparticle volume fraction distributions on the continuity, momentum, and energy equations. A set of exact solutions have been obtained for hydrodynamically and thermally fully developed laminar nanofluid flows in channels and tubes, subject to constant heat flux. From the solutions, it has been concluded that the anomalous heat transfer rate, exceeding the rate expected from the increase in thermal conductivity, is possible in such cases as titania–water nanofluids in a channel, alumina–water nanofluids in a tube and also titania–water nanofluids in a tube. Moreover, the maximum Nusselt number based on the bulk mean nanofluid thermal conductivity is captured when the ratio of Brownian and thermophoretic diffusivities is around 0.5, which can be exploited for designing nanoparticles for high-energy carriers.

References

1.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticle
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Soginer
, and
H. P.
Wang
, eds.,
ASME
, FED/MD, Vol. 231/66, pp.
99
105
.
2.
Maxwell
,
J. C.
,
1873
,
Electricity and Magnetism
,
Clarendon Press
,
Oxford
.
3.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Oxford University Press
,
Cambridge
.
4.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishimura
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei (Japan)
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
5.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Conductivities of Ethylene Glycol-Based Nanofluids Containing Nanoparticles
,”
Appl. Phys. Lett.
,
78
, pp.
718
720
.10.1063/1.1341218
6.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Trans.
,
121
(2)
, pp.
280
289
.10.1115/1.2825978
7.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlations of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
8.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I.-C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S.-P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
, p.
094312
.10.1063/1.3245330
9.
Lee
,
S.
, and
Choi
,
S. U. S.
,
1996
, “
Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems
,”
International Mechanical Engineering Congress and Exhibition
,
Atlanta, GA
, pp.
1
12
.
10.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2006
, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
,
26
, pp.
2457
2463
.10.1016/j.applthermaleng.2006.02.036
11.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
, pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
12.
Pak
,
B. C.
, and
Cho
,
Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.10.1080/08916159808946559
13.
Chien
,
R.
, and
Chuang
,
J.
,
2007
, “
Experimental Microchannel Heat Sink Performance Studies Using Nanofluids
,”
Int. J. Therm. Sci.
,
46
, pp.
57
66
.10.1016/j.ijthermalsci.2006.03.009
14.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assesment of the Effectiveness of Nanofluids for Single Phase and Two-Phase Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
15.
Ding
,
Y.
,
Chen
,
H.
,
Wang
,
L.
,
Yang
,
C. Y.
,
He
,
Y.
,
Yang
,
W.
,
Lee
,
W. P.
,
Zhang
,
L.
, and
Huo
,
R.
,
2007
, “
Heat Transfer Intensification Using Nanofluids
,”
KONA
,
25
, pp.
23
38
.
16.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
17.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Trans.
,
125
(1)
, pp.
151
155
.10.1115/1.1532008
18.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Trans.
,
128
(3)
, pp.
240
250
.10.1115/1.2150834
19.
Tzou
,
D. Y.
,
2008
, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Trans.
,
130
(7)
, p.
072401
.10.1115/1.2908427
20.
Tzou
,
D. Y.
,
2008
, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2967
2979
.10.1016/j.ijheatmasstransfer.2007.09.014
21.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
, pp.
193
199
.10.1016/j.ijheatmasstransfer.2008.06.032
22.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5796
5801
.10.1016/j.ijheatmasstransfer.2009.07.023
23.
Prabhat
,
N.
,
Buongiorno
,
J.
, and
Hu
,
L.W.
,
2011
, “
Convective Heat Transfer Enhancement in Nanofluids: Real Anomaly or Analysis Artifact?,
” Proceedings of the
ASME
/
JSME 2011 8th Thermal Engineering Joint Conference
,
Honolulu, HI
, p.
T10070
.10.1115/AJTEC2011-44020
24.
Yu
,
W.
,
France
,
D. M.
,
Timofeeva
,
E. V.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2012
, “
Comparative Review of Turbulent Heat Transfer of Nanofluids
,”
Int. J. Heat Transfer
,
55
, pp.
5380
5396
.10.1016/j.ijheatmasstransfer.2012.06.034
25.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2010
, “
Numerical Simulation of Water/Al2O3 Nanofluid Turbulent Convection
,”
Adv. Mech. Eng.
,
2010
, p.
976254
.10.1155/2010/976254
26.
Aladag
,
B.
,
Halelfadl
,
S.
,
Doner
,
N.
,
Maré
,
T.
,
Duret
,
S.
, and
Estellé
,
P.
,
2012
, “
Experimental Investigations of the Viscosity of Nanofluids at Low Temperatures
,”
Appl. Energy
,
97
, pp.
876
880
.10.1016/j.apenergy.2011.12.101
27.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage
,
52
, pp.
789
793
.10.1016/j.enconman.2010.06.072
28.
Philip
,
J.
, and
Shima
,
P. D.
,
2012
, “
Thermal Properties of Nanofluids
,”
Adv. Colloid Interface Sci.
,
183–184
, pp.
30
45
.10.1016/j.cis.2012.08.001
29.
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Amalina
,
M. A.
,
2012
, “
Latest Developments on the Viscosity of Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
, pp.
874
885
.10.1016/j.ijheatmasstransfer.2011.10.021
30.
Christianson
,
R. J.
, and
Townsend
,
J.
,
2011
, “
Contradictory Evidence for the Role of Temperature and Particle Size in Nanofluid Thermal Conductivity
,”
Mater. Res. Soc. Symp. Proc.
,
1347
, pp.
45
50
.10.1557/opl.2011.1524
31.
Ramesh
,
G.
, and
Prabhu
,
N. K.
,
2011
, “
Review of Thermo-Physical Properties, Wetting and Heat Transfer Characteristics of Nanofluids and Their Applicability in Industrial Quench Heat Treatment
,”
Nanoscale Res. Lett.
,
6
, p.
334
.10.1186/1556-276X-6-334
32.
Puliti
,
G.
,
Paolucci
,
S.
, and
Sen
,
M.
,
2011
, “
Nanofluids and Their Properties
,”
ASME Appl. Mech. Rev.
,
64
(
3
), p.
031002
.10.1115/1.4005492
33.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
,
2008
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model
,”
Appl. Therm. Eng.
,
28
, pp.
717
727
.10.1016/j.applthermaleng.2007.06.019
34.
Akbari
,
M.
,
Galanis
,
N.
, and
Behzadmehr
,
A.
,
2011
, “
Comparative Analysis of Single and Two-Phase Models for CFD Studies of Nanofluid Heat Transfer
,”
Int. J. Therm. Sci.
,
50
, pp.
1343
1354
.10.1016/j.ijthermalsci.2011.03.008
35.
Tahir
,
S.
, and
Mital
,
M.
,
2012
, “
Numerical Investigation of Laminar Nanofluid Developing Flow and Heat Transfer in a Circular Channel
,”
Appl. Therm. Eng.
,
39
, pp.
8
14
.10.1016/j.applthermaleng.2012.01.035
36.
Ho
,
C. J.
,
Huang
,
J. B.
,
Tsai
,
P. S.
, and
Yang
,
Y. M.
,
2011
, “
Water-Based Suspensions of Al2O3 Nanoparticles and MEPCM Particles on Convection Effectiveness in a Circular Tube
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
736
748
.10.1016/j.ijthermalsci.2010.11.015
37.
Liao
,
L.
,
Liu
,
Z.-H.
, and
Bao
,
R.
,
2010
, “
Forced Convective Flow Drag and Heat Transfer Characteristics of CuO Nanoparticle Suspensions and Nanofluids in a Small Tube
,”
J. Enhanced Heat Transfer
,
17
(
1
), pp.
45
57
.10.1615/JEnhHeatTransf.v17.i1.30
38.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
(
17-18
), pp.
3632
3642
.10.1016/j.applthermaleng.2009.06.019
39.
Lai
,
W. Y.
,
Vinod
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2009
, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Trans.
,
131
(
11
), p.
112401
.10.1115/1.3133886
40.
Raisee
,
M.
, and
Moghaddami
,
M.
,
2008
, “
Numerical Investigation of Laminar Forced Convection of Nanofluids Through Circular Pipes
,”
J. Enhanced Heat Transfer
,
15
(
4
), pp.
335
350
.10.1615/JEnhHeatTransf.v15.i4.60
41.
Nakayama
,
A.
,
1995
,
PC-Aided Numerical Heat Transfer and Convective Flow
,
CRC Press
,
Boca Raton, FL
, pp.
49
50
, 103–115.
You do not currently have access to this content.