In this paper, a phase change material (PCM) fluid (N-eicosane) is compared with pure water as heat transfer fluid. The heat transfer behavior of PCM fluid under laminar flow conditions (Reynolds number of 700) in circular and rectangular microchannels was studied numerically. In the numerical study, an effective specific heat model was used to take into account the phase change process. Heat transfer results for circular and rectangular microchannels with PCM fluid were obtained under hydrodynamically and thermally fully developed conditions. A PCM fluid in microchannels with aspect ratios of 1 to 2, 1 to 4, and 1 to 8 was found to enhance the thermal behavior of microchannels which can be beneficial in a host of cooling applications. The flow was assumed to be hydrodynamically fully developed at the inlet and thermally developing inside the microchannel. Heat transfer characteristics of PCM slurry flow in microchannels have been studied under three types of wall boundary conditions including constant axial heat flux with constant peripheral temperature (H1), constant heat flux with variable peripheral temperature (H2), and constant wall temperature (T) boundary condition. The fully developed Nusselt number was found to be higher for H1 than for H2 and T boundary conditions for all the geometries. Moreover, Nusselt number also increased with aspect ratio and was sensitive to the variations in effective specific heat.

References

References
1.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
2.
Li
,
L.
,
Cui
,
W.
,
Liao
,
Q.
,
Mingdao
,
X.
,
Jen
,
T. C.
, and
Chen
,
Q.
,
2005
, “
Heat Transfer Augmentation in 3D Internally Finned and Microfinned Helical Tube
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1916
1925
.10.1016/j.ijheatmasstransfer.2004.12.003
3.
Liu
,
J. T.
,
Peng
,
X. F.
, and
Yan
,
W. M.
,
2006
, “
Numerical Study of Fluid Flow and Heat Transfer in Microchannel Cooling Passages
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1855
1864
.10.1016/j.ijheatmasstransfer.2006.10.004
4.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M. K.
,
2007
, “
Experimental and Numerical Study of Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Trans.
,
129
(
10
), pp.
1432
1444
.10.1115/1.2754781
5.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packaging
,
129
(
1
), pp.
63
70
.10.1115/1.2429711
6.
Prasher
,
R.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
, He, D., and Prstic, S.,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Trans.
,
129
(
2
), pp.
141
153
.10.1115/1.2402179
7.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
8.
Garimella
,
S.
, and
Lee
,
P. S.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
9.
Ravi
,
G.
,
Alvarado
,
J. L.
,
Marsh
,
C.
, and
Kessler
,
D. A.
,
2009
, “
Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Finned Tubes
,”
Numer. Heat Transfer, Part A
,
55
(
8
), pp.
721
738
.10.1080/10407780902864672
10.
Yamagishi
,
Y.
,
Takeuchi
,
H.
,
Pyatenko
,
A. T.
, and
Kayukawa
,
N.
,
1999
, “
Characteristics of Microencapsulated PCM Slurry as a Heat-Transfer Fluid
,”
AIChE J.
,
45
(
4
), pp.
696
707
.10.1002/aic.690450405
11.
Chen
,
B.
,
Wang
,
X.
,
Zeng
,
R.
,
Zhang
,
Y.
,
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
, and
Di
,
H.
,
2008
, “
An Experimental Study of Convective Heat Transfer With Microencapsulated Phase Change Material Suspension: Laminar Flow in a Circular Tube Under Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1638
1646
.10.1016/j.expthermflusci.2008.05.008
12.
Roy
,
S. K.
, and
Avanic
,
B. L.
,
2001
, “
Laminar Forced Convection Heat Transfer With Phase Change Material Suspensions
,”
Int. Commun. Heat Mass Transfer
,
28
(
7
), pp.
895
904
.10.1016/S0735-1933(01)00293-7
13.
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
,
Wang
,
X.
,
Chen
,
B.
,
Zeng
,
R.
,
Song
,
Q.
, and
Zhang
,
Y.
,
2007
, “
Flow and Heat Transfer Behaviors of Phase Change Material Slurries in a Horizontal Circular Tube
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2480
2491
.10.1016/j.ijheatmasstransfer.2006.12.024
14.
Hu
,
X.
,
2002
, “
Novel Insight and Numerical Analysis of Convective Heat Transfer Enhancement With Microencapsulated Phase Change Material Slurries: Laminar Flow in a Circular Tube With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3163
3172
.10.1016/S0017-9310(02)00034-0
15.
Alisetti
,
E. L.
,
2000
, “
Forced Convection Heat Transfer to Phase Change Material Slurries
,”
J. Thermophys.
,
14
(
1
), pp.
115
118
.10.2514/2.6499
16.
Xing
,
K. Q.
,
Tao
,
Y. X.
, and
Hao
,
Y. L.
,
2005
, “
Performance Evaluation of Liquid Flow With PCM Particles in Microchannels
,”
ASME J. Heat Trans.
,
127
(
8
), pp.
931
940
.10.1115/1.1929783
17.
Hao
,
Y. L.
, and
Tao
,
Y. X.
,
2004
, “
A Numerical Model for Phase-Change Suspension Flow in Microchannels
,”
Numer. Heat Trans.
,
46
(
1
), pp.
55
77
.10.1080/10407780490457545
18.
Sabbah
,
R.
,
Farid
,
M. M.
, and
Said
,
A.
,
2009
, “
Micro-Channel Heat Sink With Slurry of Water With Micro-Encapsulated Phase Change Material: 3D-Numerical Study
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
445
454
.10.1016/j.applthermaleng.2008.03.027
19.
Alvarado
,
J. L.
,
Marsh
,
C.
,
Sohn
,
C.
,
Phetteplace
,
G.
, and
Newell
,
T.
,
2007
, “
Thermal Performance of Microencapsulated Phase Change Material Slurry in Turbulent Flow Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
9
), pp.
1938
1952
.10.1016/j.ijheatmasstransfer.2006.09.026
20.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2012
, “
Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Material: Experimental Study
,”
ASME J. Heat Trans.
,
134
(4), p.
044501
.10.1115/1.4005311
21.
Dammel
,
F.
, and
Stephan
,
P.
,
2012
, “
Heat Transfer to Suspensions of Microencapsulated Phase Change Material Flowing Through Minichannels
,”
ASME J. Heat Trans.
,
134
(2), p.
020907
.10.1115/1.4005062
22.
Shah
,
R. K.
, and
London
,
A. L.
,
1974
, “
Thermal Boundary Conditions and Some Solutions for Laminar Duct Flow Forced Convection
,”
ASME J. Heat Trans.
,
96
(2), pp.
159
165
.10.1115/1.3450158
23.
Ansys, Inc., Product Documentation, Fluent 6.3.26, Ansys, Inc., Canonsburg, PA.
24.
Kays
,
W. M.
,
1966
,
Convective Heat and Mass Transfer
,
McGraw-Hill Book Company
,
New York
.
25.
Kandlikar
,
S.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
New York
.
26.
Frank
,
P. I.
, and
DeWitt
,
D. P.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
, Hoboken, NJ.
27.
Ravi
,
G.
,
2008
, “
Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid
,” M.S. thesis,
Texas A & M University
, College Station, TX.
You do not currently have access to this content.