The redox chemistry of nonstoichiometric metal oxides can be used to produce chemical fuels by harnessing concentrated solar energy to split water and/or carbon dioxide. In such a process, it is desirable to use a porous reactive substrate for increased surface area and improved gas transport. The present study develops a macroscopic-scale model of porous ceria undergoing thermal reduction. The model captures the coupled interactions between the heat and mass transfer and the heterogeneous chemistry using a local thermal nonequilibrium (LTNE) formulation of the volume-averaged conservation of mass and energy equations in an axisymmetric cylindrical domain. The results of a representative test case simulation demonstrate strong coupling between gas phase mass transfer and the chemical kinetics as well as the pronounced impact of optical thickness on the temperature distribution and thus global solar-to-chemical energy conversion.

References

References
1.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
, pp.
1611
1623
.10.1016/j.solener.2005.12.005
2.
Chueh
,
W.
, and
Haile
,
S.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
, pp.
735
739
.10.1002/cssc.200900138
3.
Cheuh
,
W.
, and
Haile
,
S.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. A
,
368
, pp.
3269
3294
.10.1098/rsta.2010.0114
4.
Lapp
,
J.
,
Davidson
,
J.
, and
Lipinski
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
, pp.
591
600
.10.1016/j.energy.2011.10.045
5.
Venstrom
,
L.
,
Petkovich
,
N.
,
Rudisill
,
S.
,
Stein
,
A.
, and
Davidson
,
J.
,
2012
, “
The Effects of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide
,”
ASME J. Sol. Energ.
,
134
(
1
), p.
011005
.10.1115/1.4005119
6.
Petkovich
,
N.
,
Rudisill
,
S.
,
Venstrom
,
L.
,
Davidson
,
J.
, and
Stein
,
A.
,
2011
, “
Control of Heterogeneity in Nanostructured Ce1−xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity
,”
J. Phys. Chem. C
,
115
(
43
), pp.
21022
21033
.10.1021/jp2071315
7.
Miller
,
J.
,
Allendorf
,
M.
,
Diver
,
R.
,
Evans
,
L.
,
Siegel
,
N.
, and
Stuecker
,
J.
,
2008
, “
Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,”
J. Mater. Sci.
,
43
, pp.
4714
4728
.10.1007/s10853-007-2354-7
8.
Chueh
,
W.
,
Falter
,
C.
,
Abbot
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
, pp.
1797
1801
.10.1126/science.1197834
9.
Whitaker
,
S.
,
1999
,
The Method of Volume Averaging
,
Kluwer Academic
,
Boston
.
10.
Liang
,
Z.
,
Chueh
,
W.
,
Ganesan
,
K.
,
Haile
,
S.
, and
Lipinski
,
W.
,
2011
, “
Experimental Determination of Transmittance of Porous Cerium Dioxide Media in the Spectral Range of 300−1100 nm
,”
Exp. Heat Transfer
,
24
(
4
), pp.
285
299
.10.1080/08916152.2010.542876
11.
Ganesan
,
K.
, and
Lipinski
,
W.
,
2011
, “
Experimental Determination of Spectral Transmittance of Porous Cerium Dioxide in the Range 900-1700 nm
,”
ASME J. Heat Trans.
,
133
(
10
), p.
104501
.10.1115/1.4003970
12.
Dombrovsky
,
L. A.
,
Ganesan
,
K.
, and
Lipiński
,
W.
,
2012
, “
Combined Two-Flux Approximation and Monte Carlo Model for Identification of Radiative Properties of Highly Scattering Dispersed Materials
,”
Comput. Therm. Sci.
,
4
, pp.
365
378
.10.1615/ComputThermalScien.2012005025
13.
Ganesan
,
K.
,
Dombrovsky
,
L. A.
, and
Lipiński
,
W.
,
2013
, “
Visible and Near-Infrared Optical Properties of Ceria Ceramics
,”
Infrared Phys. Technol.
,
57
, pp.
101
109
.10.1016/j.infrared.2012.12.040
14.
Cussler
,
E.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
Cambridge
.
15.
Yaws
,
C.
,
2009
,
Transport Properties of Chemicals and Hydrocarbons: Viscosity, Thermal Conductivity, and Diffusivity of C1 to C100 Organics and Ac to Zr Inorganics
,
Elsevier
,
New York
.
16.
Binnewies
,
M.
, and
Milke
,
E.
,
2002
,
Thermochemical Data of Elements and Compounds
,
Wiley-VCH
,
Weinheim, Germany
.
17.
Chekhovskoy
,
V.
, and
Stavrovsky
,
G.
,
1970
, “
Thermal Conductivity of Cerium Dioxide
,”
9th Conference on Thermal Conductivity
, pp.
295
298
.
18.
Panlener
,
R.
,
Blumenthal
,
R.
, and
Garnier
,
J.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
, pp.
1213
1222
.10.1016/0022-3697(75)90192-4
19.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
,
Academic Press
,
New York
.
20.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
21.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds. Correlation of Nusselt Numbers
,”
Chem. Eng. Sci.
,
34
, pp.
325
336
.10.1016/0009-2509(79)85064-2
22.
Kuwahara
,
F.
,
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
,
2011
, “
Exact Solutions for a Thermal Nonequilibrium Model of Fluid Saturated Porous Media Based on an Effective Porosity
,”
ASME J. Heat Trans.
,
133
(
11
), p.
112602
.10.1115/1.4004354
23.
Haussener
,
S.
, and
Steinfeld
,
A.
,
2012
, “
Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
,”
Materials
,
5
, pp.
192
209
.10.3390/ma5010192
24.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
25.
Ferziger
,
J.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
,
Springer
,
New York
.
You do not currently have access to this content.