In this paper, the inverse radiation boundary problem is solved using a simplified backward Monte Carlo method (MCM) for cases in which radiation is the dominant mode of heat transfer (i.e., radiative equilibrium). For an N-surface enclosure, N2 radiative transfer factors are required to carry out the radiant exchange calculations. In this paper, it is shown that when the enclosure is comprised of some adiabatic surfaces (as is nearly always the case in radiative furnaces), this number can be reduced considerably. This reduction in the required number of distribution factors causes a clear simplification in the formulation of the inverse problem and a substantial reduction in the computational time. After presenting the formulation for the inverse problem, standard test cases are solved to demonstrate the efficiency and the accuracy of the proposed method.

References

References
1.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
Comparison of Three Regularized Solution Techniques in a Three-Dimensional Inverse Radiation Problem
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
(
2
), pp.
307
316
.10.1016/S0022-4073(01)00212-6
2.
Howell
,
J. R.
,
Daun
,
K.
,
Ertürk
,
H.
,
Gamba
,
M.
, and
Hosseini Sarvari
,
M.
,
2003
, “
The Use of Inverse Methods for the Design and Control of Radiant Sources
,”
JSME Int. J.
,
46
(
4
), pp.
470
478
.10.1299/jsmeb.46.470
3.
Emery
,
A. F.
,
2005
, “
Some Thoughts on Solving the Radiative Transfer Equation in Stochastic Media Using Polynomial Chaos and Wick Products as Applied to Radiative Equlibrium
,”
J. Quant. Spectrosc. Radiat. Transf.
,
93
(
1
), pp.
61
77
.10.1016/j.jqsrt.2004.07.033
4.
Daun
,
K. J.
and
Howell
,
J. R.
,
2005
, “
Inverse Design Methods for Radiative Transfer Systems
,”
J. Quant. Spectrosc. Radiat. Transf.
,
93
(
1
), pp.
43
60
.10.1016/j.jqsrt.2004.08.012
5.
Sarvari
,
S. M. H.
,
2005
, “
Inverse Determination of Heat Source Distribution in Conductive–Radiative Media With Irregular Geometry
,”
J. Quant. Spectrosc. Radiat. Transf.
,
93
(
1
), pp.
383
395
.10.1016/j.jqsrt.2004.08.031
6.
Daun
,
K.
,
Franca
,
F.
,
Larsen
,
M.
,
Leduc
,
G.
, and
Howell
,
J. R.
,
2006
, “
Comparison of Methods for Inverse Design of Radiant Enclosures
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
269
282
.10.1115/1.2151198
7.
Pourshaghaghy
,
A.
,
Pooladvand
,
K.
,
Kowsary
,
F.
, and
Karimi-Zand
,
K.
,
2006
, “
An Inverse Radiation Boundary Design Problem for an Enclosure Filled With an Emitting-Absorbing, and Scattering Media
,”
Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
381
390
.10.1016/j.icheatmasstransfer.2005.12.007
8.
Kowsary
,
F.
,
Pooladvand
,
K.
, and
Pourshaghaghy
,
A.
,
2007
, “
Regularized Variable Metric Method Versus the Conjugate Gradient Method in Solution of Radiative Boundary Design Problem
,”
J. Quant. Spectrosc. Radiat. Transf.
,
108
(
2
), pp.
277
294
.10.1016/j.jqsrt.2007.03.007
9.
Safavinejad
,
A.
,
Mansouri
,
S. H.
,
Sakurai
,
A.
, and
Maruyama
,
S.
,
2009
, “
Optimal Number and Location of Heaters in 2-D Radiant Enclosures Composed of Specular and Diffuse Surfaces Using Micro-Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
5
), pp.
1075
1085
.10.1016/j.applthermaleng.2008.05.025
10.
Tan
,
H. P.
,
Zhang
,
H. C.
, and
Zhen
,
B.
,
2004
, “
Estimation of Ray Effect and False Scattering in Approximate Solution Method for Thermal Radiative Transfer Equation
,”
Numer. Heat Transfer, Part A
,
46
(
8
), pp.
807
829
.10.1080/104077890504267
11.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2004
, “
Boundary Condition Design to Heat a Moving Object at Uniform Transient Temperature Using Inverse Formulation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
619
626
.10.1115/1.1763179
12.
Daun
,
K.
,
Howell
,
J. R.
, and
Morton
,
D. P.
,
2004
, “
Optimization of Transient Settings to Provide Spatially Uniform Heating in Manufacturing Processes Involving Radiant Heating
,”
Numer. Heat Transfer, Part A
,
46
(
7
), pp.
651
667
.10.1080/104077890504375
13.
Mehraban
,
S.
,
Sarvari
,
S. M. H.
, and
Farahat
,
S.
,
2007
, “
A Quasi-Steady Method for Inverse Design and Control of a Two-Dimensional Radiant Oven in Transient State
,”
J. Mech. Aerosp. Eng.
,
3
(
3
), pp.
73
83
.
14.
Salinas
,
C. T.
,
2010
, “
Inverse Radiation Analysis in Two-Dimensional Gray Media Using the Discrete Ordinates Method With a Multidimensional Scheme
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
302
310
.10.1016/j.ijthermalsci.2009.08.003
15.
Bayat
,
N.
,
Mehraban
,
S.
, and
Sarvari
,
S. M. H.
,
2010
, “
Inverse Boundary Design of a Radiant Furnace With Diffuse-Spectral Design Surface
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
103
110
.10.1016/j.icheatmasstransfer.2009.07.005
16.
Mahan
,
J. R.
,
2002
,
Radiation Heat Transfer: Stastical Approach
,
Wiley
,
New York
.
17.
Kowsary
,
F.
,
1999
, “
A Computationally Efficient Method for Monte Carlo Simulation of Diffuses Radiant Emission or Reflection
,”
Int. J. Heat Mass Transf.
,
42
, pp.
193
195
.10.1016/S0017-9310(98)00087-8
18.
Naeimi
,
H.
,
2012
, “
An Efficient Monte Carlo Method to Simulate Radiation Heat Transfer in Vacuum Furnaces
,”
Ph.D thesis, Department of Mechanical Engineering
,
University of Tehran,
Tehran
.
19.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
4th
ed.,
Taylor & Francis
,
New York
.
20.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd
ed.,
Academic Press
,
New York
.
21.
Heaslet
,
M. A.
, and
Warming
,
R. F.
,
1965
, “
Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium
,”
Int. J. Heat Mass Transf.
,
8
(
7
), pp.
979
994
.10.1016/0017-9310(65)90083-9
22.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2002
, “
The Application of an Inverse Formulation in the Design of Boundary Conditions for Transient Radiating Enclosures
,”
ASME J. Heat Transfer
,
124
(
8
), pp.
1095
1102
.10.1115/1.1513574
23.
Tikhonov
,
A. N.
,
Goncharsky
,
A. V.
,
Stepanov
,
V. V.
, and
Yagola
,
A. G.
,
1995
,
Numerical Methods for Solving Ill-Posed Problems
,
Kluwer Academic Publishers
,
Boston, MA
.
You do not currently have access to this content.