An experimental study of heat transfer to supercritical water has been performed at Xi'an Jiaotong University with a vertical annular tube. The annular test sections were constructed with an annular gap of 2 mm and an internal heater of 8 mm outer diameter. Experimental parameter covered pressures of 23 and 25 MPa, mass fluxes of 700 and 1000 kg/m2s, and heat fluxes of 200–1000 kW/m2. Experimental data were acquired from downward flow and upward flow, respectively. There were differences of heat-transfer characteristics between the two flow directions. Compared to upward flow, the heat-transfer coefficient increased at downward flow. A strong effect of spacer on heat transfer is observed at locations downstream of the device in the annuli regardless of flow direction. The spacer effect impaired the buoyancy effect at low heat flux, but not for large heat flux. Complex of forced convection and mixed convection in supercritical water is due to various thermophysical properties and the gravity. The affected zone of the spacer effect depends on the flow conditions. The buoyancy effect was analyzed qualitatively in this study and the criterion Gr¯/Re2.7<10-5 for negligible heat-transfer impairment was discussed. Four correlations were compared with the experimental data; the Swenson correlation predicted nearly the experimental data but overpredicted slightly the heat-transfer coefficients.

References

References
1.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power-Engineering Applications
,
ASME
,
New York
.
2.
Nuclear Energy Research Advisory Committee and Generation IV International Forum
,
2002
, “A Technology Roadmap for Generation IV Nuclear Energy Systems,” Report No. GIF-002.
3.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels—Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.10.1016/j.nucengdes.2003.10.010
4.
Kitao
,
A.
,
Matsui
,
O.
,
Yoneda
,
N.
,
Kozaka
,
K.
,
Shinmura
,
R.
,
Koda
,
W.
,
Kobayashi
,
S.
,
Gabata
,
T.
,
Zen
,
Y.
,
Yamashita
,
T.
,
Kaneko
,
S.
, and
Nakanuma
,
Y.
,
2011
, “
The Uptake Transporter OATP8 Expression Decreases During Multistep Hepatocarcinogenesis: Correlation With Gadoxetic Acid Enhanced MR Imaging
,”
Eur. Radiol.
,
21
(
10
), pp.
2056
2066
.10.1007/s00330-011-2165-8
5.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2407
2430
.10.1016/j.nucengdes.2005.05.034
6.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
,
2002
, “
Reference Fluid Thermodynamic and Transport Properties-REFPORP
,”
NIST Standard Reference Database 23 ver. 7.0.
,
U.S. Department of Commerce
, Boulder, CO.
7.
Yamagata
,
K.
,
Yoshida
,
S.
,
Fujii
,
T.
,
Hasegawa
,
S.
, and
Nishikaw
,
K.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
8.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
477
483
.10.1115/1.3689139
9.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1970
, “
The Effects of Swirl, Inlet Conditions, Flow Direction, and Tube Diameter on the Heat Transfer to Fluids at Supercritical Pressure
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
465
471
.10.1115/1.3449690
10.
Kim
,
D. E.
, and
Kim
,
M.-H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
11.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical-Analysis of Deterioration Phenomena in Heat-Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.10.1016/0017-9310(95)00008-W
12.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convention Heat Transfer Fluid at Supercritical Pressure
,” Turbulent Forced Convection in Channels and Bundles, Vol. 2, 1st ed., Hemisphere, New York, pp.
563
611
.
13.
Jackson
,
J. D.
,
2006
, “
Studies of Buoyancy-Influenced Turbulent Flow and Heat Transfer in Vertical Passages
,”
Invited Keynote Lecture Given at the 13th International Heat Transfer Conference
, Sydney, Australia.
14.
Wang
,
J. G.
,
Li
,
H. X.
,
Yu
,
S. Q.
, and
Chen
,
T. K.
,
2011
, “
Investigation on the Characteristics and Mechanisms of Unusual Heat Transfer of Supercritical Pressure Water in Vertically-Upward Tubes
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1950
1958
.10.1016/j.ijheatmasstransfer.2011.01.008
15.
Bazargan
,
M.
,
Fraser
,
D.
, and
Chatoorgan
,
V.
,
2005
, “
Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in a Horizontal Round Tube
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
897
902
.10.1115/1.1929787
16.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1969
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
27
36
.10.1115/1.3580115
17.
Renz
,
U.
, and
Bellinghausen
,
R.
,
1986
, “
Heat Transfer in a Vertical Pipe at Supercritical Pressure
,”
8th International Heat Transfer Conference
, Vol. 3, pp.
957
962
.
18.
Cheng
,
X.
,
Kuang
,
B.
, and
Yang
,
Y. H.
,
2007
, “
Numerical Analysis of Heat Transfer in Supercritical Water Cooled Flow Channels
,”
Nucl. Eng. Des.
,
237
(
3
), pp.
240
252
.10.1016/j.nucengdes.2006.06.011
19.
Zhou
,
Q. T.
,
1985
, “
Calculation of Inner Wall Temperature for a Electrically Heated Thick-Wall Tube
,”
J. Nanjing Inst. Technol.
,
4
, pp.
38
43
(in Chinese).
20.
Zhou
,
Q.
,
1983
, “
Influences of Buoyancy on Heat Transfer to Supercritical Pressure Water in Vertical Tubes
,”
J. Eng. Thermophys.
,
4
, pp.
165
172
(in Chinese).
21.
Meyer
,
L.
,
Bastron
,
A.
,
Hofmeister
,
J.
, and
Schulenberg
,
T.
,
2007
, “
Enhancement of Heat Transfer in Fuel Assemblies of High Performance Light Water Reactors
,”
J. Nucl. Sci. Technol.
,
44
(
3
), pp.
270
276
.10.1080/18811248.2007.9711282
22.
Gajapathy
,
R.
,
Velusamy
,
K.
,
Selvaraj
,
P.
,
Chellapandi
,
P.
, and
Chetal
,
S. C.
,
2007
, “
CFD Investigation of Helical Wire-Wrapped 7-Pin Fuel Bundle and the Challenges in Modeling Full Scale 217 Pin Bundle
,”
Nucl. Eng. Des.
,
237
(
24
), pp.
2332
2342
.10.1016/j.nucengdes.2007.05.003
23.
Raza
,
W.
, and
Kim
,
K. Y.
,
2008
, “
Effects of Wire-Spacer Shape in LMR on Thermal-Hydraulic Performance
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2678
2683
.10.1016/j.nucengdes.2008.05.003
24.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Yoo
,
T. H.
,
2011
, “
Effect of a Helical Wire on Mixed Convection Heat Transfer to Carbon Dioxide in a Vertical Circular Tube at Supercritical Pressures
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
340
351
.10.1016/j.ijheatfluidflow.2010.06.013
25.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,”
Westinghouse Electric Corp.
,
Pittsburgh, PA
, Report No. WCAP-2056, Part IV.
26.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Connection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference, Shenzhen
, China.
You do not currently have access to this content.