The laminar natural convection of a rotating fluid quasi-sphere in the presence of an axial gravity field and uniform heat source is presented. The influence of the Rayleigh number Ra and the Taylor number Ta on the flow pattern and heat transfer rate from the fluid quasi-sphere is discussed. The governing nonsteady, three-dimensional Navier–Stokes equations for an incompressible fluid, formulated in a Cartesian coordinate system, have been numerically solved by using the h/p spectral element method. It is shown that for a given Ta number, as the Ra number is increased, the heat transfer on the northern hemisphere is enhanced whereas the average Nusselt number on the southern hemisphere is reduced. On the other hand for a given Ra number, as the Ta number is increased, the heat transfer is a function of the convective motion intensity. It has been found that for low and high Ra numbers the heat transfer rate slightly depends on the rotation rate. However at intermediate Ra numbers, the net effect of an increased rotation rate is a reduction of the heat transfer through the wall, hence an increase of the maximum temperature of the fluid sphere is observed. We show that the net effect of the Coriolis force is to damp the convective motion and to allow a redistribution of the vorticity field.

References

References
1.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford, UK
.
2.
Roberts
,
P. H.
,
1965
, “
On the Thermal Instability of a Highly Rotating Fluid Sphere
,”
Astrophysical J.
,
141
, pp.
240
250
.10.1086/148106
3.
Roberts
,
P. H.
,
1968
, “
On the Thermal Instability of a Rotating-Fluid Sphere Containing Heat Sources
,”
Philos. Trans. R. Soc. London, Ser. A
,
263
, pp.
93
117
.10.1098/rsta.1968.0007
4.
Evonuk
,
M.
, and
Glatzmaier
,
G. A.
,
2007
, “
The Effects of Rotation Rate on Deep Convection in Giant Planets With Small Solid Cores
,”
Planet. Space Sci.
,
55
, pp.
407
412
.10.1016/j.pss.2006.07.008
5.
Anguiano-Orozco
,
G.
, and
Avila
,
R.
,
2009
, “
Vortex Ring Formation Within a Spherical Container With Natural Convection
,”
Comput. Model. Simul. Eng.
,
49
, pp.
217
254
.
6.
Sharma
,
A. K.
, and
Balaji
,
C.
,
2004
, “
A Numerical Study of Natural Convection From a Localized Heat Source in the Lower Plenum of a Fast Breeder Reactor Under Failed Conditions
,”
Int. J. Heat Mass Transfer
,
40
, pp.
853
858
.10.1007/s00231-003-0479-z
7.
Dinh
,
T. N.
,
Nourgaliev
,
R. R.
, and
Sehgal
,
B. R.
,
1997
, “
On Heat Transfer Characteristics of Real and Stimulant Melt Pool Experiments
,”
Nucl. Eng. Des.
,
169
, pp.
151
164
.10.1016/S0029-5493(96)01283-6
8.
Dinh
,
T. N.
, and
Nourgaliev
,
R. R.
,
1997
, “
Turbulence Modelling for Large Volumetrically Heated Liquid Pools
,”
Nucl. Eng. Des.
,
169
, pp.
131
150
.10.1016/S0029-5493(96)01281-2
9.
Whitley
,
H. G., III
, and
Vachon
,
R. I.
,
1972
, “
Transient Laminar Free Convection in Closed Spherical Containers
,”
ASME J. Heat Transfer
,
94
(4)
, pp.
360
366
.10.1115/1.3449952
10.
Chow
,
M. Y.
, and
Akins
,
R. G.
,
1975
, “
Pseudosteady-State Natural Convection Inside Spheres
,”
ASME J. Heat Transfer
,
97
(1)
, pp.
54
59
.10.1115/1.3450287
11.
Hutchins
,
J.
, and
Marschall
,
E.
,
1989
, “
Pseudosteady-State Natural Convection Heat Transfer Inside Spheres
,”
Int. J. Heat Mass Transfer
,
32
, pp.
2047
2053
.10.1016/0017-9310(89)90111-7
12.
Zhang
,
Y.
,
Khodadadi
,
J.
, and
Shen
,
F.
,
1999
, “
Pseudosteady-State Natural Convection Inside Spherical Containers Partially Filled With a Porous Medium
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2327
2336
.10.1016/S0017-9310(98)00328-7
13.
Ladeinde
,
F.
, and
Torrance
,
K. E.
,
1991
, “
Convection in a Rotating, Horizontal Cylinder With Radial and Normal Gravity Forces
,”
J. Fluid Mech.
,
228
, pp.
361
385
.10.1017/S0022112091002744
14.
Shew
,
W. L.
, and
Lathrop
,
D. P.
,
2005
, “
Liquid Sodium Model of Geophysical Core Convection
,”
Phys. Earth Planet. Interiors
,
153
, pp.
136
149
.10.1016/j.pepi.2005.03.013
15.
Asfia
,
F. J.
, and
Dhir
,
V. K.
,
1996
, “
An Experimental Study of Natural Convection in a Volumetrically Heated Spherical Pool Bounded on Top With a Rigid Wall
,”
Nucl. Eng. Des.
,
163
, pp.
333
348
.10.1016/0029-5493(96)01215-0
16.
Dallman
,
R. J.
, and
Douglass
,
R. W.
,
1980
, “
Convection in a Rotating Spherical Annulus With a Uniform Axial Gravitational Field
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1303
1312
.10.1016/0017-9310(80)90205-7
17.
Heinrich
,
J. C.
, and
Pepper
,
D. W.
,
1989
, “
Flow Visualization of Natural Convection in a Differentially Heated Sphere
,”
Flow Visualization
,
B.
Khalighi
,
M. J.
Braun
, and
C. J.
Freitas
, eds., ASME FED, New York, Vol.
85
, pp.
135
141
.
18.
Pepper
,
D. W.
, and
Heinrich
,
J. C.
,
1993
, “
Transient Natural Convection Within a Sphere Using a 3-D Finite Element Method
,”
Finite Elements in Fluids
,
K.
Morgan
,
E.
Oñate
,
J.
Periaux
,
J.
Peraire
, and
O. C.
Zienkiewicz
, eds.,
Pineridge Press
,
UK
, pp.
369
378
.
19.
Greenspan
,
H. P.
,
1968
,
The Theory of Rotating Fluids
,
Cambridge University Press
, New York.
20.
King
,
E. M.
,
Stellmach
,
S.
,
Noir
,
J.
,
Hansen
,
U.
, and
Aurnou
,
J. M.
,
2009
, “
Boundary Layer Control of Rotating Convection Systems
,”
Nature
,
457
, pp.
301
304
.10.1038/nature07647
21.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
, pp.
468
488
.10.1016/0021-9991(84)90128-1
22.
Rønquist
,
E. M.
,
1988
, “
Optimal Spectral Element Methods for the Unsteady Three-Dimensional Incompressible Navier-Stokes Equations
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
23.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
1999
,
Spectral/hp Element Methods for CFD
,
Oxford University Press
,
New York
.
24.
Avila
,
R.
, and
Solorio
,
F. J.
,
2009
, “
Numerical Solution of 2D Natural Convection in a Concentric Annulus With Solid-Liquid Phase Change
,”
Comput. Model. Eng. Sci.
,
44
, pp.
177
202
.
25.
Cabello-Gonzalez
,
A.
, and
Avila
,
R.
,
2010
, “
Numerical Simulation of the Convective Flow Patterns Within a Rotating Concentric Annulus With Radial Gravity
,” 63rd Annual Meeting of the APS Division of Fluid Dynamics, Long Beach, CA, Nov. 21–23.
26.
Osorio
,
A.
,
Avila
,
R.
, and
Cervantes
,
J.
,
2004
, “
On the Natural Convection of Water Near Its Density Inversion in an Inclined Square Cavity
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4491
4495
.10.1016/j.ijheatmasstransfer.2004.06.003
27.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford, UK
.
You do not currently have access to this content.