A nanofluid model is simulated by molecular dynamics (MD) approach. The simulated nanofluid has been a dispersion of single walled carbon nanotubes (CNT) in liquid water. Intermolecular force in liquid water has been determined using TIP4P model, and, interatomic force due to carbon nanotube has been calculated by the simplified form of Brenner's potential. However, interaction between molecules of water and atoms of carbon nanotube is modeled by Lennard-Jones potential. The Green–Kubo method is employed to predict the effective thermal conductivity of the nanofluid, and, effect of temperature is sought. The obtained results are checked against experimental data, and, good agreement between them is observed.
Issue Section:
Micro/Nanoscale Heat Transfer
Topics:
Carbon,
Nanofluids,
Simulation,
Temperature,
Thermal conductivity,
Water,
Nanotubes,
Carbon nanotubes
References
1.
Chandrasekar
, M.
, and Suresh
, S.
, 2009
, “A Review on the Mechanisms of Heat Transport in Nanofluids
,” Heat Transfer Eng.
, 30
(14
), pp. 1136
–1150
.10.1080/014576309029727442.
Das
, S. K.
, Choi
, S. U. S.
, Yu
, W.
, and Pradeep
, T.
, 2007
, Nanofluids: Science and Technology
, John Wiley & Sons Inc.
, Hoboken, NJ
.3.
Masuda
, H.
, Ebata
, A.
, Teramae
, K.
, and Hishinuma
, N.
, 1993
, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, TiO2 Ultra-Fine Particles)
,” Netsu Bussei
, 7
(4
), pp. 227
–233
(in Japanese).10.2963/jjtp.7.2274.
Lee
, S.
, Choi
, S. U. S.
, Li
, S.
, and Eastman
, J. A.
, 1999
, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,” ASME J. Heat Transfer
, 121
(2
), pp. 280
–289
.10.1115/1.28259785.
Murshed
, S. M. S.
, Leong
, K. C.
, and Yang
, C.
, 2005
, “Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,” Int. J. Therm. Sci.
, 44
, pp. 367
–373
.10.1016/j.ijthermalsci.2004.12.0056.
Das
, S. K.
, Putra
, N.
, Thiesen
, P.
, and Roetzel
, W.
, 2003
, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,” ASME J. Heat Transfer
, 125
(4
), pp. 567
–574
.10.1115/1.15710807.
Chon
, C. H.
, Kihm
, K. D.
, Lee
, S. P.
, and Choi
, S. U. S.
, 2005
, “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,” Appl. Phys. Lett.
, 87
, p. 153107
.10.1063/1.20939368.
Li
, C. H.
, and Peterson
, G. P.
, 2006
, “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,” J. Appl. Phys.
, 99
, p. 084314
.10.1063/1.21915719.
Ding
, Y.
, Alias
, H.
, Wen
, D.
, and Williams
, R. A.
, 2006
, “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,” Int. J. Heat Mass Transfer
, 49
, pp. 240
–250
.10.1016/j.ijheatmasstransfer.2005.07.00910.
Zhang
, Z. M.
, 2007
, Nano/Microscale Heat Transfer
, McGraw-Hill
, New York
.11.
Minkowycz
, W. J.
, and Sparrow
, E. M.
, 2000
, Numerical Heat Transfer
, Vol. 2
, Taylor & Francis
, New York
, pp. 189
–202
.12.
Sarkar
, S.
, and Selvam
, R. P.
, 2007
, “Thermal Conductivity Computation of Nanofluids by Equilibrium Molecular Dynamics Simulation: Nanoparticle Loading and Temperature Effect
,” Mater. Res. Soc. Symp. Proc.
, 1022
, pp. II01
–II08
.10.1557/PROC-1022-II01-0813.
Sankar
, N.
, Mathew
, N.
, and Sobhan
, C. B.
, 2008
, “Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions,” Int. Comm. Heat Mass Transfer
, 35
(7
), pp. 867
–872
.10.1016/j.icheatmasstransfer.2008.03.00614.
Rapaport
, D. C.
, 2004
, The Art of Molecular Dynamics Simulation
, 3rd ed., Cambridge University Press
, United Kingdom
.15.
Walther
, J. H.
, Jaffe
, R.
, Halicioglu
, T.
, and Koumoutsakos
, P.
, 2001
, “Carbon Nanotube in Water: Structural Characteristics and Energetics
,” J. Phys. Chem. B
, 105
, pp. 9980
–9987
.10.1021/jp011344u16.
McGaughey
, A. J. H.
, and Kaviany
, M.
, 2006
, “Phonon Transport in Molecular Dynamics Simulations: Formation and Thermal Conductivity Prediction
,” Advances in Heat Transfer
, G. A.
Green
, J. P.
Hartnett
, A.
Bar-Cohen
, Y. I.
Cho
, and T. F.
Irvine
, eds., Elsevier
, Amsterdam
, pp. 169
–248
.Copyright © 2013 by ASME
You do not currently have access to this content.