Secondary flow is the flow in the cross section normal to the main flow. It plays an important role on the enhanced heat transfer and in the applications in other fields. Secondary flow can greatly enhance the convective heat transfer. In order to find the effectiveness of secondary flow for heat transfer enhancement, a nondimensional parameter, Se, based on the absolute vorticity flux is reported to specify the intensity of secondary flow. Its physical meaning is the ratio of inertial force to viscous force induced by secondary flow. As an example, the effectiveness of secondary flow was numerically studied for a flat tube bank fin heat exchanger with vortex generators (VGs) mounted on both surfaces of the fin. The contributions of VGs are investigated for the enhancements of secondary flow intensity, convective heat transfer, and pressure drop. The method is demonstrated using Se to find out the optimum configurations of VGs. The results reveal that close relationships exist not only between the span-average nondimensional intensity of secondary flow and the span-average Nusselt number but also between the volume average nondimensional intensity of secondary flow and the overall average Nusselt number. For the configuration studied, a ratio of Nusselt number enhancement to the friction factor enhancement increases with increasing the enhancement of secondary flow intensity. As a supplement to traditional criteria on a good performance heat transfer surface, the nondimensional intensity of secondary flow can be used clearly for an optimum value of VG parameter.

References

References
1.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
20
, pp.
208
223
.
2.
Webb
,
R. L.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
2000
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer
,
122
(1), pp.
134
142
.10.1115/1.521444
3.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I—Laminar Flows
,”
ASME J. Heat Transfer
,
115
(4), pp.
881
889
.10.1115/1.2911383
4.
Rao
,
Y.
,
Xu
,
Y. M.
, and
Wan
,
C. Y.
,
2012
, “
A Numerical Study of the Flow and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
ASME J. Heat Transfer
,
134
(7), p.
071902
.10.1115/1.4006098
5.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2012
, “
Enhanced Thermal Transport in Microchannel Using Oblique Fins
,”
ASME J. Heat Transfer
,
134
(10), p.
101901
.10.1115/1.4006843
6.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
.10.1016/0017-9310(94)90099-X
7.
Fiebig
,
M.
,
1995
, “
Vortex Generators for Compact Heat Exchangers
,”
J. Enhanced Heat Transfer
,
2
, pp.
43
61
.
8.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
.10.1016/0017-9310(95)00398-3
9.
Torii
,
K.
,
Kwak
,
K. M.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3795
3801
.10.1016/S0017-9310(02)00080-7
10.
Gao
,
S. D.
,
Wang
,
L. B.
,
Zhang
,
Y. H.
, and
Ke
,
F.
,
2003
, “
The Optimum Height of Winglet Vortex Generators Mounted on Three-Row Flat Tube Bank Fin
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1007
1016
.10.1115/1.1621900
11.
Zhang
,
Y. H.
,
Wang
,
L. B.
,
Su
,
Y. X.
, and
Gao
,
S. D.
,
2004
, “
Effects of Longitudinal Spacing of In-Line Vortex Generators on Local and Average Heat Mass Transfer Over Flat Tube Bank Fin
,”
Exp. Heat Transfer
,
17
, pp.
69
90
.10.1080/08916150490246555
12.
Zhang
,
Y. H.
,
Wang
,
L. B.
,
Su
,
Y. X.
, and
Gao
,
S. D.
,
2004
, “
The Effects of Span Position of Winglet Vortex Generator on Local Heat/Mass Transfer Over a Three-Row Flat Tube Bank Fin
,”
Heat Mass Transfer
,
40
, pp.
881
891
.10.1007/s00231-003-0498-9
13.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1156
1167
.10.1115/1.2740308
14.
Song
,
K. W.
,
Wang
,
L. B.
,
Fan
,
J. F.
,
Zhang
,
Y. H.
, and
Liu
,
S.
,
2008
, “
Numerical Study of Heat Transfer Enhancement of Finned Flat Tube Bank Fin With Vortex Generators Mounted on Both Surfaces of the Fin
,”
Heat Mass Transfer
,
44
, pp.
959
967
.10.1007/s00231-007-0339-3
15.
Zhang
,
Y. H.
,
Wu
,
X.
,
Wang
,
L. B.
,
Song
,
K. W.
,
Dong
,
Y. X.
, and
Liu
,
S.
,
2008
, “
Comparison of Heat Transfer Performance of Tube Bank Fin With Mounted Vortex Generators to Tube Bank Fin With Punched Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
33
, pp.
58
66
.10.1016/j.expthermflusci.2008.07.002
16.
Akcayoglu
,
A.
,
2011
, “
Flow Past Confined Delta-Wing Type Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
112
120
.10.1016/j.expthermflusci.2010.08.012
17.
Bishara
,
F.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2009
, “
Computational Simulation of Swirl Enhanced Flow and Heat Transfer in a Twisted Oval Tube
,”
ASME J. Heat Transfer
,
131
(
8
), p.
080902
.10.1115/1.3143015
18.
Song
,
K. W.
, and
Wang
,
L. B.
,
2008
, “
Relationship Between Heat Transfer Intensity and Absolute Vorticity Flux Intensity in Flat Tube Bank Fin Channels With Vortex Generators
,”
Prog. Comput. Fluid Dyn.
,
8
(
7–8
), pp.
496
502
.10.1504/PCFD.2008.021327
19.
Song
,
K. W.
,
Wang
,
L. B.
, and
Sun
,
D. L.
,
2009
, “
Convective Heat Transfer and Absolute Vorticity Flux Along Main Flow in a Channel Formed by Flat Tube Bank Fins With Vortex Generators Mounted on Both Fin Surfaces
,”
J. Enhanced Heat Transfer
,
16
(
2
), pp.
123
139
.10.1615/JEnhHeatTransf.v16.i2.30
20.
Ke
,
F.
,
Wang
,
L. B.
,
Hua
,
L.
,
Gao
,
S. D.
, and
Su
,
Y. X.
,
2006
, “
The Optimum Angle of Attack of Delta Winglet Vortex Generators on Heat Transfer Performance of Finned Flat Tube Bank With Considering Non-Uniform Fin Temperature
,”
Exp. Heat Transfer
,
19
, pp.
227
249
.10.1080/08916150600616576
21.
Chen
,
Y. Y.
,
Song
,
K. W.
,
Wang
,
L. B.
, and
Sun
,
D. L.
,
2009
, “
Comparisons of Local Experimental Results With Numerical Results of Heat Transfer Enhancement of a Flat Tube Bank Fin With Vortex Generators
,”
Numer. Heat Transfer, Part A
,
55
(
2
), pp.
144
162
.10.1080/10407780802603204
22.
Kylikof
,
U. A.
,
1988
,
The Cooling System of Diesel Locomotive
,
Machine Construction Press
,
Moscow
(in Russian).
You do not currently have access to this content.