A model based on the augmented Young–Laplace equation and kinetic theory was developed to describe the nanostructured roughness effects on an extended evaporating meniscus in a microchannel for Wenzel and Cassie–Baxter states. The roughness geometries were analytically related to the disjoining pressure, slip length and thermal resistance across the roughness layer. The results show that the equivalent Hamaker constant and adsorbed film thickness increase with nanopillar height for Wenzel state. Thus, the spreading and wetting properties of the evaporating thin film increase with roughness for Wenzel state, leading to an elongated thin film and enhanced heat transfer rate compared to a flat hydrophilic surface. The equivalent Hamaker constant and disjoining pressure effect decrease with increasing nanopillar height for Cassie–Baxter state. The system wettability, thin film length and heat transfer rate increase with increasing slip length and with decreasing roughness for Cassie–Baxter state. A smaller roughness coexisting with a larger slip length on rough surfaces for Cassie–Baxter state results in a much higher heat transfer rate relative to a flat surface.

References

References
1.
Plawsky
,
J. L.
,
Ojha
,
M.
,
Chatterjee
,
A.
, and
Wayner
,
P. C.
, Jr.,
2008
, “
Review of the Effects of Surface Topography, Surface Chemistry, and Fluid Physics on Evaporation at the Contact Line
,”
Chem. Eng. Commun.
,
196
(
5
), pp.
658
696
.10.1080/00986440802569679
2.
Zhao
,
J. J.
,
Huang
,
M.
,
Min
,
Q.
,
Christopher
,
D. M.
, and
Duan
,
Y. Y.
,
2011
, “
Near-Wall Liquid Layering, Velocity Slip and Solid-Liquid Interfacial Thermal Resistance for Thin Film Evaporation in Microchannels
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
2
), pp.
105
122
.10.1080/15567265.2011.560927
3.
Ma
,
H. B.
,
Cheng
,
P.
,
Borgmeyer
,
B.
, and
Wang
,
Y. X.
,
2008
, “
Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,”
Microfluid. Nanofluid.
,
4
, pp.
237
243
.10.1007/s10404-007-0172-5
4.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
5.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
6.
Park
,
K.
,
Noh
,
K. J.
, and
Lee
,
K. S.
,
2003
, “
Transport Phenomenon in the Thin-Film Region of a Micro-Channel
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2381
2388
.10.1016/S0017-9310(02)00541-0
7.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2011
, “
Effects of Superheat and Temperature-Dependent Thermophysical Properties on Evaporating Thin Liquid Films in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1259
1267
.10.1016/j.ijheatmasstransfer.2010.10.026
8.
Christopher
,
D. M.
, and
Zhang
,
L.
,
2010
, “
Heat Transfer in the Microlayer Under a Bubble During Nucleate Boiling
,”
Tsinghua Sci. Tech.
,
15
(
4
), pp.
404
413
.10.1016/S1007-0214(10)70080-8
9.
Wee
,
S. K.
,
Kihm
,
K. D.
, and
Hallinan
,
K. P.
,
2005
, “
Effects of the Liquid Polarity and the Wall Slip on the Heat and Mass Transport Characteristics of the Micro-Scale Evaporating Transition Film
,”
Int. J. Heat Mass Transfer
,
48
, pp.
265
278
.10.1016/j.ijheatmasstransfer.2004.08.021
10.
Ojha
,
M.
,
Chatterjee
,
A.
,
Dalakos
,
G.
,
Wayner
,
P. C.
, Jr.
, and
Plawsky
,
J. L.
,
2010
, “
Role of Solid Surface Structure on Evaporative Phase Change From a Completely Wetting Corner Meniscus
,”
Phys. Fluids
,
22
, p.
052101
.10.1063/1.3392771
11.
Robbins
,
M. O.
,
Andelman
,
D.
, and
Joanny
,
J. F.
,
1991
, “
Thin Liquid Films on Rough or Heterogeneous Solids
,”
Phys. Rev. A
,
43
, pp.
4344
4354
.10.1103/PhysRevA.43.4344
12.
Rednikov
,
A. Y.
, and
Colinet
,
P.
,
2011
, “
Truncated Versus Extended Microfilms at a Vapor-Liquid Contact Line on a Heated Substrate
,”
Langmuir
,
27
(
5
), pp.
1758
1769
.10.1021/la102065c
13.
Ojha
,
M.
,
Chatterjee
,
A.
,
Mont
,
F.
,
Schubert
,
E. F.
,
Wayner
,
P. C.
, Jr., and
Plawsky
,
J. L.
,
2010
, “
The Role of Solid Surface Structure on Dropwise Phase Change Processes
,”
Int. J. Heat Mass Transfer
,
53
, pp.
910
922
.10.1016/j.ijheatmasstransfer.2009.11.033
14.
Cao
,
L. L.
,
Hu
,
H. H.
, and
Gao
,
D.
,
2007
, “
Design and Fabrication of Micro-Textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials
,”
Langmuir
,
23
, pp.
4310
4314
.10.1021/la063572r
15.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2008
, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
, p.
064501
.10.1103/PhysRevLett.101.064501
16.
Tsai
,
P.
,
Lammertink
,
R. G. H.
,
Wessling
,
M.
, and
Lohse
,
D.
,
2010
, “
Evaporation-Triggered Wetting Transition for Water Droplets Upon Hydrophobic Microstructures
,”
Phys. Rev. Lett.
,
104
, p.
116102
.10.1103/PhysRevLett.104.116102
17.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.10.1038/38686
18.
Choi
,
C. H.
, and
Kim
,
C. J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
, p.
066001
.10.1103/PhysRevLett.96.066001
19.
Zhao
,
J. J.
,
Peng
,
X. F.
, and
Duan
,
Y. Y.
,
2010
, “
Slip and Micro Flow Characteristics Near a Wall of Evaporating Thin films in a Micro Channel
,”
Heat Transfer-Asian Res.
,
39
(
7
), pp.
460
474
.
20.
Jiao
,
A. J.
,
Ma
,
H. B.
, and
Critser
,
J. K.
,
2008
, “
Heat Transport Characteristics in a Miniature Flat Heat Pipe With Wire Core Wicks
,”
ASME J. Heat Transfer
,
130
(5), p.
051501
.10.1115/1.2887858
21.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2012
, “
A 3-D Numerical Heat Transfer Model for Silica Aerogels Based on the Porous Secondary Nanoparticle Aggregate Structure
,”
J. Non-Cryst. Solids
,
358
, pp.
1287
1297
.10.1016/j.jnoncrysol.2012.02.035
22.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
,
2008
, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe With a Grooved Wick
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4637
4650
.10.1016/j.ijheatmasstransfer.2008.02.039
23.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2011
, “
Effect of Nanofluids on Thin Film Evaporation in Microchannels
,”
J. Nanopart. Res.
,
13
, pp.
5033
5047
.10.1007/s11051-011-0484-y
24.
NIST Chemistry WebBook: NIST Standard Reference Database 69, March 2003 release.
25.
Palasantzas
,
G.
,
1995
, “
Wetting on Rough Self-Affine Surfaces
,”
Phys. Rev. B
,
51
(
20
), pp.
14612
14615
.10.1103/PhysRevB.51.14612
You do not currently have access to this content.