This paper presents a methodology for obtaining the convective heat transfer coefficient from the wall of a heated aluminium plate, placed in a vertical channel filled with open cell metal foams. For accomplishing this, a thermal resistance model from literature for metal foams is suitably modified to account for contact resistance. The contact resistance is then evaluated using the experimental results. A correlation for the estimation of the contact resistance as a function of the pertinent parameters, based on the above approach is developed. The model is first validated with experimental results in literature for the asymptotic case of negligible contact resistance. A parametric study of the effect of different foam parameters on the heat transfer is reported with and without the presence of contact resistance. The significance of the effect of contact resistance in the mixed convection and forced convection regimes is discussed. The procedure to employ the present methodology in an actual case is demonstrated and verified with additional, independent experimental data.

References

References
1.
Kurtbas
,
I.
, and
Celik
,
N.
,
2009
, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam_filled Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1313
1325
.10.1016/j.ijheatmasstransfer.2008.07.050
2.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.10.1016/j.ijheatmasstransfer.2007.12.012
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
, pp.
557
565
.10.1115/1.1287793
4.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
5.
Schmierer
,
E. N.
, and
Razani
,
A.
,
2006
, “
Self-Consistent Open-Celled Metal Foam Model for Thermal Applications
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1194
1203
.10.1115/1.2352787
6.
Sadeghi
,
E.
,
Djilali
,
N.
, and
Bahrami
,
M.
,
2009
, “
Thermal Conductivity and Thermal Contact Resistance of Metal Foams
,”
ASME
Summer Heat Transfer Conference
, San Francisco, CA, July 19–23, pp.
355
365
.10.1115/HT2009-88557
7.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.10.1023/A:1006643815323
8.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.10.1016/S0017-9310(00)00123-X
9.
Fiedler
,
T.
,
Solorzano
,
E.
,
Garcia-Moreno
,
F.
,
Ochsner
,
A.
,
Belova
,
I. V.
, and
Murch
,
G. E.
,
2009
, “
Lattice Monte Carlo and Experimental Analyses of the Thermal Conductivity of Random-Shaped Cellular Aluminum
,”
Adv. Eng. Mater.
,
11
(
10
), pp.
843
847
.10.1002/adem.200900132
10.
Nield
,
D.
, and
Kuznetsov
,
A.
,
2010
, “
Forced Convection in Cellular Porous Materials: Effect of Temperature-Dependent Conductivity Arising From Radiative Transfer
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2680
2684
.10.1016/j.ijheatmasstransfer.2010.02.041
11.
Lu
,
T.
,
Ashby
,
M.
, and
Stone
,
H.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
12.
Ghosh
,
I.
,
2008
, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034501
.10.1115/1.2804941
13.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
.10.1016/j.ijthermalsci.2011.01.007
14.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Thermal Assessment of Forced Convection Through Metal Foam Heat Exchangers
,”
ASME J. Heat Transfer
,
133
, p.
111801
.10.1115/1.4004530
15.
Cavallini
,
A.
,
Mancin
,
S.
,
Rossetto
,
L.
, and
Zilio
,
C.
,
2009
, “
Air Flow in Aluminum Foam: Heat Transfer and Pressure Drops Measurements
,”
Exp. Heat Transfer
,
23
(
1
), pp.
94
105
.10.1080/08916150903402765
16.
DeGroot
,
C. T.
,
Gateman
,
D.
, and
Straatman
,
A. G.
,
2010
, “
The Effect of Thermal Contact Resistance at Porous-Solid Interfaces in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041007
.10.1115/1.4002724
17.
Howard
,
S. R.
, and
Korinko
,
P. S.
,
2003
, “
Vacuum Furnace Brazing Open Cell Reticulated Foam to Stainless Steel Tubing
,”
2nd International Brazing and Soldering Conference
,
San Diego, CA
, pp.
2
9
.
18.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
19.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminium and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.10.1016/j.ijthermalsci.2012.08.015
20.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5231
5241
.10.1016/j.ijheatmasstransfer.2011.08.020
21.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
22.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,” Ph.D. thesis, University of Colorado, Boulder, CO.
23.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
24.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2001
, “
Thermal Transport Phenomena in Porvair Metal Foams and Sintered Beds
,” Technical Report, Micromechanics Centre and Whittle Lab, Department of Engineering, University of Cambridge, Cambridge. Available at http://www.fuelcellmarkets.com/content/images/articles/white_paper8.pdf
25.
Ji
,
X.
, and
Xu
,
J.
,
2012
, “
Experimental Study on the Two-Phase Pressure Drop in Copper Foams
,”
Heat Mass Transfer
,
48
, pp.
153
164
.10.1007/s00231-011-0860-2
26.
Liu
,
J. F.
,
Wu
,
W. T.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Measurement and Correlation of Friction Characteristic of Flow Through Foam Matrixes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
329
336
.10.1016/j.expthermflusci.2005.07.007
27.
Girlich
,
D.
,
2009
, “Open Pore Metal Foam,” retrieved June
2011
, http://www.m-pore.de/Download/CellMet-Veroeffentlichung_4_.pdf
28.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
29.
Zukauskas
,
A. A.
,
1987
, “
Convective Heat Transfer in Cross Flow
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
30.
Fiedler
,
T.
,
Belova
,
I. V.
, and
Murch
,
G. E.
,
2012
, “
Critical Analysis of the Experimental Determination of the Thermal Resistance of Metal Foams
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4415
4420
.10.1016/j.ijheatmasstransfer.2012.04.010
You do not currently have access to this content.