The requirement for high tensile strength steel has placed greater emphasis on the cooling methods used in the cooling of a hot steel plate. The purpose of this research is to study the effect of surfactant concentration in water jet cooling, and its applicability in the study of ultrafast cooling (UFC) of a hot steel plate. The initial temperature of the plate, before the cooling starts, is kept at 900 °C which is usually observed as the “finish rolling temperature (FRT)” in the hot strip mill of a steel plant. The current heat transfer analysis shows that surfactant added water jet produces higher heat flux than the pure water jet due to the higher forced convection cooling area. Dissolved surfactant increases the transition boiling heat flux, nucleate boiling heat flux and critical heat flux. At a concentration of 600 ppm, the maximum surface heat flux has been observed and further increase in surfactant concentration decreases the surface heat flux. The surface heat flux and the cooling rate show an increasing trend with the increasing water flow rate at a constant surfactant concentration. The achieved cooling rate in case of surfactant added water is almost twice that of jet with pure water, resulting in ultrafast cooling. By assuming the impinging surface consists of three different constant heat flux regions, the surface heat flux and the surface temperatures have been calculated by using intemp software.

References

1.
Devdas
,
C.
, and
Samarsekera
,
I. V.
,
1986
, “
Heat Transfer During Hot Rolling of Steel Strip
,”
Ironmaking Steelmaking
,
13
(
6
), pp.
311
321
.
2.
Cox
,
S. D.
,
Hardy
,
S. J.
, and
Parkar
,
D. J.
,
2001
, “
Influence of Runout Table Operation Setup on Hot Strip Quality, Subject to Initial Strip Condition: Heat Transfer Issues
,”
Ironmaking Steelmaking
,
28
(
5
), pp.
363
372
.10.1179/030192301678226
3.
Hatta
,
N.
,
Kokado
,
J.
,
Takuda
,
H.
,
Harada
,
J.
, and
Hiraku
,
K.
,
1984
, “
Predictable Modeling for Cooling Process of a Hot Steel Plate by a Laminar Water Bar
,”
Arch. Eisenhuttenwes.
,
55
(
4
), pp.
143
149
.
4.
Liu
,
Z.
, and
Samarasekera
,
I.
,
2004
, “
Application of Cooling Water in Controlled Runout Table Cooling on Hot Strip Mill
,”
J. Iron Steel Res.
,
11
(
3
), pp.
15
23
.
5.
Guo
,
R. M.
,
1993
, “
Heat Transfer of Laminar Flow Cooling During Strip Acceleration on Hot Strip Mill Runout Tables
Trans. ISS-AIME
,
8
, pp.
49
59
.
6.
Bin
,
H.
,
Hua
,
L. X.
,
Guo-dong
W.
, and
Guang-fu
,
S.
,
2005
, “
Development of Cooling Process Technique in Hot Strip Mill
,”
J. Iron Steel Res.
,
12
(
1
), pp.
12
16
.
7.
Lucas
,
A.
,
Simon
,
P.
,
Bourdon
,
G.
,
Herman
,
J. C.
,
Riche
,
P.
,
Neutjens
,
J.
, and
Harlet
,
P.
,
2004
, “
Metallurgical Aspect of Ultra Fast Cooling in Front of Down-Coiler
,”
Steel Res. Int.
,
75
(
2
), pp.
139
146
.
8.
Cho
,
M. J.
,
Thomas
,
B. G.
, and
Lee
,
P. J.
,
2008
, “
Three-Dimensional Numerical Study of Impinging Water Jet in Run-Out Table Cooling Processes
,”
Metall. Mater. Trans. B
,
39
(
4
), pp.
593
602
.10.1007/s11663-008-9160-8
9.
Zumbrunnen
,
D. A.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1989
, “
The Effect of Surface Motion on Forced Convection Film Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
760
766
.10.1115/1.3250748
10.
Lee
,
P.
,
Choi
,
H.
, and
Lee
,
S.
,
2004
, “
The Effect of Nozzle Height on Cooling Heat Transfer Form a Hot Steel Plate by an Impinging Liquid Jet
,”
ISIJ Int.
,
44
(
4
), pp.
704
709
.10.2355/isijinternational.44.704
11.
Junior
,
H. L.
,
de-Silva
,
A. F. C.
, and
Passos
,
J. C.
,
2007
, “
Heat Transfer Behavior of a High Temperature Steel Plate Cooled by a Subcooled Impinging Circular Water Jet
,”
19th International Congress on Mechanical Engineering
,
ABCM
,
Brasilia
, DF, Brazil.
12.
Leocadio
,
H.
,
Passos
,
J. C.
, and
de-Silva
,
A. F. C.
,
2009
, “
Analysis of the Cooling Effect of Water Jet on a Hot Steel Plate
,”
7th ECI International Conference on Boiling Heat Transfer
,
ABCM
,
Florianpolis, SC, Brazil
.
13.
Robidou
,
H.
,
Auracher
,
H.
,
Gardin
,
P.
, and
Lebouche
,
M.
,
2002
, “
Controlled Cooling of a Hot Plate With Water Jet
,”
Int. J. Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
123
129
.10.1016/S0894-1777(02)00118-8
14.
Viskanta
,
R.
, and
Bergman
,
T.
,
1998
,
Heat Transfer in Materials Processing
,
McGraw-Hill
,
New York
.
15.
Seiler-Marie
,
N.
,
Seiler
,
J.-M.
, and
Simonin
,
O.
,
2004
, “
Transition Boiling at Jet Impingement
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5059
5070
.10.1016/j.ijheatmasstransfer.2004.06.009
16.
Timm
,
W.
,
Weinzierl
,
K.
, and
Leipertz
,
A.
,
2003
, “
Heat Transfer in Subcooled Jet Impingement Boiling at High Wall Temperatures
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1385
1393
.10.1016/S0017-9310(02)00416-7
17.
Liu
,
Z. H.
, and
Wang
,
J.
,
2001
, “
Study on Film Boiling Heat Transfer for Water Jet Impinging on High Temperature Flat Plate
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2475
2481
.10.1016/S0017-9310(00)00281-7
18.
Tinker
,
S.
,
di Marzo
,
M.
,
Taratarini
,
P.
,
Chandra
,
S.
, and
Quiao
,
Y. M.
,
1995
, “
Dropwise Evaporative Cooling: Effect of Dissolved Gases and Surfactants
,”
International Conference on Fire Research and Engineering
,
Orlando
,
FL
, pp.
91
96
.
19.
Chandra
,
S.
,
di Marzo
,
M.
,
Qiao
,
Y. M.
, and
Tartarini
,
P.
,
1996
, “
Effect of Liquid-Solid Contact Angle on Droplet Evaporation
,”
Fire Saf. J.
,
27
(
2
), pp.
141
158
.10.1016/S0379-7112(96)00040-9
20.
Qiao
,
Y. M.
, and
Chandra
,
S. M.
,
1997
, “
Experiments on Adding a Surfactant to Water Drops Boiling on a Hot Surface
,”
Proc. R. Soc. A
,
453
(
1959
), pp.
673
689
.10.1098/rspa.1997.0038
21.
Clay
,
A. M.
, and
Miksis
,
M. J.
,
2004
, “
Effect of Surfactant on Droplet Spreading
,”
Phys. Fluid
,
16
(
8
), pp.
3070
3078
.10.1063/1.1764827
22.
Madasu
,
S.
,
2009
, “
Effect of Soluble Surfactants on Dynamic Wetting of Flexible Substrates: A Finite Element Study
,”
Phys. Fluid
,
21
(
8
), pp.
1
10
.10.1063/1.3274019
23.
Qiao
,
Y. M.
, and
Chandra
,
S. M.
,
1998
, “
Spray Cooling Enhancement by Addition of Surfactant
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
92
98
.10.1115/1.2830070
24.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
2003
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
Rio de Janeiro
, p.
494
.
25.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
2003
,
intemp—Inverse Heat Transfer Analysis—User's manual
,
Trucomp Co.
,
Fountain Valley, Canada
, pp.
1
48
.
26.
Li
,
D.
, and
Wells
,
M. A.
,
2004
, “
Effect of Surface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux During a Quench Operation
,”
Metall. Mater. Trans. B
,
36
(
3
), pp.
343
354
.10.1007/s11663-005-0064-6
27.
Fox
,
H. W.
, and
Chrisman
,
C. H.
,
1952
, “
The Ring Method of Measuring Surface Tension for Liquids of High Density and Low Surface Temperature
,”
J. Phys. Chem.
,
56
(
2
), pp.
284
287.
10.1021/j150494a031
28.
Masutani
,
G.
, and
Stenstrom
,
M. K.
,
1984
, “
A Review of Surface Tension Measuring Techniques, Surfactants, and Their Implications for Oxygen Transfer in Waste Water Treatment Plants
,” Technical Report,
University of California
,
Los Angles
.
You do not currently have access to this content.