Effects of Gaussian surface roughness on different aspects of thermal performance of conical microfins are investigated. A new analytical model is developed, applying the Adomian decomposition method. Convergence of the Adomian solution to the exact solution is shown, by increasing the number of computed decomposition terms. In addition, to verify the present solution, the obtained results are compared with the analytical results of Bahrami et al. (2007, “Role of Random Roughness on Thermal Performance of Microfins,” J. Thermophys. Heat Transfer, 21(1), pp. 153–157) for the uniform cross-section microfin. Surface roughness effects on temperature distribution, base heat flux at different Nusselt numbers, and thermal resistance of the microfin are investigated. It is observed that the thermal resistance of the smooth microfin is higher than the rough one and by increasing the roughness, the thermal resistance experiences further reduction.

References

References
1.
Huang
,
Q.
, and
Lee
,
N. K. S.
,
1999
, “
Analysis and Design of Polysilicon Thermal Flexture Actuator
,”
J. Micromech. Microeng.
,
9
, pp.
64
70
.10.1088/0960-1317/9/1/308
2.
Mankame
,
N.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Comprehensive Thermal Modelling and Characterization of an Electro-Thermal-Compliant Microactuator
,”
J. Micromech. Microeng.
,
11
, pp.
452
462
.10.1088/0960-1317/11/5/303
3.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
,
2002
, “
Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin_fins and Submicron-Scale Roughness
,”
ASME J. Heat Transfer
,
124
, pp.
383
390
.10.1115/1.1447937
4.
Hickey
,
R.
,
Sameoto
,
D.
,
Hubbard
,
T.
, and
Kujath
,
M.
,
2003
, “
Time and Frequency Response of Two-Arm Micromachined Thermal Actuators
,”
J. Micromech. Microeng.
,
13
, pp.
40
46
.10.1088/0960-1317/13/1/306
5.
Marques
,
C.
, and
Kelly
,
K. W.
,
2004
, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
ASME J. Heat Transfer
,
126
, pp.
434
444
.10.1115/1.1731341
6.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
7.
Sahiti
,
N.
,
2006
, “
Thermal and Fluid Dynamic Performance of Pin Fin Heat Transfer Surfaces
,” Ph.D. dissertation,
Erlangen-Nürnberg
, Germany.
8.
Galvis
,
E.
,
Jubran
,
B. A.
,
Xi
,
F.
,
Behdinan
,
K.
, and
Fawaz
,
Z.
,
2008
, “
Numerical Modeling of Pin–Fin Micro Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
659
666
.10.1007/s00231-007-0291-2
9.
Kosar
,
A.
,
2011
, “
Exergo-Economic Analysis of Micro Pin Fin Heat Sinks
,”
Int. J. Energy Res.
,
35
(
11
), pp.
1004
1013
.10.1002/er.1751
10.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin_fin Heat Sinks Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
.10.1016/j.ijthermalsci.2010.06.011
11.
Jasperson
,
B. A.
,
Yongho
,
J.
,
Turner
,
K. T.
,
Pfefferkorn
,
F. E.
, and
Weilin
,
Q.
,
2010
, “
Comparison of Micro-Pin_fin and Microchannel Heat Sinks Considering Thermal-Hydraulic Performance and Manufacturability
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
148
160
.10.1109/TCAPT.2009.2023980
12.
Lin
,
T. U.
, and
Kandlikar
,
S. G.
,
2012
, “
An Experimental Investigation of Structured Roughness Effect on Heat Transfer During Single-Phase Liquid Flow at Microscale
,”
ASME J. Heat Transfer
,
134
, p.
101701
.10.1115/1.4006844
13.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2007
, “
Role of Random Roughness on Thermal Performance of Microfins
,”
J. Thermophys. Heat Transfer
,
21
(
1
), pp.
153
157
.10.2514/1.22353
14.
Najafi
,
M.
,
Ramezanizadeh
,
M.
,
Taeibi-Rahni
,
M.
, and
Saidi
,
M. H.
,
2006
, “
Analytical Solution of Fin/Slab Heat Transfer and Property Distribution, Using Adomian Decomposition Method
,”
WSEAS Trans. Math.
,
5
(
7
), pp.
794
800
.
15.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamental of Heat and Mass Transfer
,
Wiley
,
New York
, Chap. 3.
16.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 13.
17.
Lambert
,
M. A.
, and
Fletcher
,
L. S.
,
1997
, “
Thermal Contact Conductance of Spherical Rough Metals
,”
ASME J. Heat Transfer
,
119
(
4
), pp.
684
690
.10.1115/1.2824172
18.
Achenbach
,
E.
,
1977
, “
The Effect of Surface Roughness on the Heat Transfer From a Circular Cylinder to the Cross Flow of Air
,”
Int. J. Heat Mass Transfer
,
20
, pp.
359
369
.10.1016/0017-9310(77)90157-0
19.
Wang
,
T.
,
Mislevy
,
S. P.
, and
Huang
,
J. C. P.
,
1994
, “
Natural Convection Enhancement on Micro-Grooved Surfaces
,”
J. Enhanced Heat Transfer
,
1
(
3
), pp.
245
254
.
20.
Adomian
,
G.
, and
Rach
,
R.
,
1993
, “
Analytical Solution of Nonlinear Boundary-Value Problems in Several Dimensions by Decomposition
,”
J. Math. Anal. Appl.
,
174
, pp.
118
137
.10.1006/jmaa.1993.1105
21.
Adomian
,
G.
,
1988
, “
A Review of the Decomposition Method in Applied Mathematics
,”
J. Math. Anal. Appl.
,
135
, pp.
501
544
.10.1016/0022-247X(88)90170-9
22.
Lesnic
,
D.
,
2002
, “
Convergence of Adomian's Decomposition Method: Periodic Temperatures
,”
Int. J. Comput. Math.
,
44
, pp.
13
24
.10.1016/S0898-1221(02)00127-X
You do not currently have access to this content.