In this paper, the scale effects are specifically addressed by conducting experiments with air flow in different microtubes. Three stainless steel tubes of 962, 308, and 83 μm inner diameter (ID) are investigated for friction factor, and the first two are investigated for heat transfer. Viscous heating effects are studied in the laminar as well as turbulent flow regimes by varying the air flow rate. The axial conduction effects in microtubes are experimentally explored for the first time by comparing the heat transfer in SS304 tube with a 910 μm ID/2005 μm outer diameter nickel tube specifically fabricated using an electrodeposition technique. After carefully accounting for the variable heat losses along the tube length, it is seen that the viscous heating and the axial conduction effects become more important at microscale and the present models are able to predict these effects accurately. It is concluded that neglecting these effects is the main source of discrepancies in the data reported in the earlier literature.

References

References
1.
Yu
,
D.
,
Warrington
,
R.
,
Barron
,
R.
, and
Ameel
,
T.
,
1995
, “
Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of the 1995 ASME/JSME Thermal Engineering Joint Conference (Part 1 of 4)
, Mar. 19–24,
ASME
,
New York,
pp.
523
530
.
2.
Peiyi
,
W.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators
,”
Cryogenics
,
23
(
5
), pp.
273
277
.10.1016/0011-2275(83)90150-9
3.
Peng
,
X. F.
, and
Wang
,
B. X.
,
1993
, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.10.1016/0017-9310(93)90160-8
4.
Wang
,
B. X.
, and
Peng
,
X. F.
,
1994
, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
SUPPL 1
), pp.
73
82
.10.1016/0017-9310(94)90011-6
5.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.10.1016/0017-9310(95)00327-4
6.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
.10.1016/S0017-9310(97)00180-4
7.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1991
, “
Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of Winter Annual Meeting of the American Society of Mechanical Engineers
, Dec. 1–6,
ASME
,
New York,
pp.
123
134
.
8.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.10.1016/S0017-9310(02)00076-5
9.
Lin
,
T.-Y.
, and
Yang
,
C.-Y.
,
2007
, “
An Experimental Investigation on Forced Convection Heat Transfer Performance in Micro Tubes by the Method of Liquid Crystal Thermography
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4736
4742
.10.1016/j.ijheatmasstransfer.2007.03.038
10.
Yang
,
C. Y.
, and
Lin
,
T. Y.
,
2007
, “
Heat Transfer Characteristics of Water Flow in Microtubes
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
432
439
.10.1016/j.expthermflusci.2007.05.006
11.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
,
2004
, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2817
2830
.10.1016/j.ijheatmasstransfer.2003.11.034
12.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
, pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
13.
Celata
,
G. P.
,
Cumo
,
M.
, and
Zummo
,
G.
,
2004
, “
Thermal-Hydraulic Characteristics of Single-Phase Flow in Capillary Pipes
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
87
95
.10.1016/S0894-1777(03)00026-8
14.
Yen
,
T.-H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
,
2003
, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1771
1792
.10.1016/j.ijmultiphaseflow.2003.09.004
15.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
,
2003
, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
149
159
.10.1016/S0017-9310(02)00209-0
16.
Turner
,
S. E.
,
Sun
,
H.
,
Faghri
,
M.
, and
Gregory
,
O. J.
,
2001
, “
Compressible Gas Flow Through Smooth and Rough Microchannels
,”
Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition
, Nov. 11–16,
American Society of Mechanical Engineers
,
New York,
pp.
381
384
.
17.
Kohl
,
M. J.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Sadowski
,
D. L.
,
2005
, “
An Experimental Investigation of Microchannel Flow With Internal Pressure Measurements
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1518
1533
.10.1016/j.ijheatmasstransfer.2004.10.030
18.
Lin
,
T.-Y.
,
Kandlikar
,
S. G.
,
2013
, “
Heat Transfer Investigation of Air Flow in Microtubes—Part I: Effects of Heat Loss, Viscous Heating, and Axial Conduction
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031703
.10.1115/1.4007876
19.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
A Theoretical Model for Axial Heat Conduction Effects During Single-Phase Flow in Microchannels
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020902
.10.1115/1.4004936
20.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
,
2003
, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
284
298
.10.1016/S0142-727X(03)00019-5
21.
Lin
,
T.-Y.
,
Yang
,
C.-Y.
, and
Kandlikar
,
S. G.
,
2009
, “
Measurement of Heat Transfer in the Entrance Region of Small Diameter Tubes
,”
Proceedings of 7th International Conference on Nanochannels, Microchannels, and Minichannels
(
ICNMM
2009), June 22–24,
American Society of Mechanical Engineers
, pp.
623
630
.10.1115/ICNMM2009-82249
22.
Choquette
,
S. F.
,
Faghri
,
M.
,
Kenyon
,
E. J.
, and
Sunden
,
B.
,
1996
, “
Compressible Fluid Flow in Micron Sized Channels
,”
Proceedings of the 1996 31st ASME National Heat Transfer Conference (Part 5 of 8)
, Aug. 3–6,
ASME
,
New York,
pp.
25
32
.
23.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
,
2003
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.10.1080/01457630304069
You do not currently have access to this content.