Experiments were conducted to investigate local heat transfer coefficients and flow characteristics of air flow in a 962 μm inner diameter stainless steel microtube (minichannel). The effects of heat loss, axial heat conduction and viscous heating were systematically analyzed. Heat losses during the experiments with gas flow in small diameter tubes vary considerably along the flow length, causing the uncertainties to be very large in the downstream region. Axial heat conduction was found to have a significant effect on heat transfer at low Re. Viscous heating was negligible at low Re, but the effect was found to be significant at higher Re. After accounting for varying heat losses, viscous heating and axial conduction, Nu was found to agree very well with the predictions from conventional heat transfer correlations both in laminar and turbulent flow regions. No early transition to turbulent flow was found in the present study.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.10.1016/S0017-9310(02)00076-5
3.
Yang
,
C. Y.
, and
Lin
,
T. Y.
,
2007
, “
Heat Transfer Characteristics of Water Flow in Microtubes
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
432
439
.10.1016/j.expthermflusci.2007.05.006
4.
Lin
,
T.-Y.
, and
Yang
,
C.-Y.
,
2007
, “
An Experimental Investigation on Forced Convection Heat Transfer Performance in Micro Tubes by the Method of Liquid Crystal Thermography
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4736
4742
.10.1016/j.ijheatmasstransfer.2007.03.038
5.
Yen
,
T.-H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
,
2003
, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1771
1792
.10.1016/j.ijmultiphaseflow.2003.09.004
6.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
,
2004
, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2817
2830
.10.1016/j.ijheatmasstransfer.2003.11.034
7.
Peng
,
X. F.
, and
Wang
,
B. X.
,
1993
, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.10.1016/0017-9310(93)90160-8
8.
Wang
,
B. X.
, and
Peng
,
X. F.
,
1994
, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
SUPPL 1
), pp.
73
82
.10.1016/0017-9310(94)90011-6
9.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.10.1016/0017-9310(95)00327-4
10.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
.10.1016/S0017-9310(97)00180-4
11.
Peiyi
,
W.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators
,”
Cryogenics
,
23
(
5
), pp.
273
277
.10.1016/0011-2275(83)90150-9
12.
Tang
,
G. H.
,
Li
,
Z.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2282
2295
.10.1016/j.ijheatmasstransfer.2006.10.034
13.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H. H.
, and
Zemel
,
J.
,
1990
, “
Liquid and Gas Transport in Small Channels
,”
American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC
, Vol.
19
, pp.
149
157
.
14.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1991
, “
Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of Winter Annual Meeting of the American Society of Mechanical Engineers
,
Dec. 1–6
, ASME,
New York
, pp.
123
134
.
15.
Liu
,
J.
,
Tai
,
Y.-C.
, and
Ho
,
C.-M.
,
1995
, “
MEMS for Pressure Distribution Studies of Gaseous Flows in Microchannels
,” Proceedings of the
IEEE
Micro Electro Mechanical Systems
, pp.
209
215
.10.1109/MEMSYS.1995.472578
16.
Shih
,
J. C.
,
Ho
,
C.-M.
,
Liu
,
J.
, and
Tai
,
Y.-C.
,
1996
, “
Monatomic and Polyatomic Gas Flow Through Uniform Microchannels
,”
American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC
, Vol.
59
, pp.
197
203
.
17.
Harley
,
J. C.
,
Huang
,
Y. F.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
,
1995
, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.10.1017/S0022112095000358
18.
Takuto
,
A.
,
Kim
,
M. S.
,
Iwai
,
H.
, and
Suzuki
,
K.
,
2002
, “
An Experimental Investigation of Gaseous Flow Characteristics in Microchannels
,”
Microscale Thermophys. Eng.
,
6
, pp.
117
130
.10.1080/10893950252901268
19.
Kohl
,
M. J.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Sadowski
,
D. L.
,
2005
, “
An Experimental Investigation of Microchannel Flow With Internal Pressure Measurements
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1518
1533
.10.1016/j.ijheatmasstransfer.2004.10.030
20.
Turner
,
S. E.
,
Sun
,
H.
,
Faghri
,
M.
, and
Gregory
,
O. J.
,
2001
, “
Compressible Gas Flow Through Smooth and Rough Microchannels
,”
Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition
,
Nov. 11–16
, American Society of Mechanical Engineers,
New York
, pp.
381
384
.
21.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
,
2003
, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
149
159
.10.1016/S0017-9310(02)00209-0
22.
Acosta
,
R. E.
,
Muller
,
R. H.
, and
Tobias
,
C. W.
,
1985
, “
Transport Processes in Narrow (Capillary) Channels
,”
AIChE J.
,
31
(
3
), pp.
473
482
.10.1002/aic.690310315
23.
Wu
,
P.
, and
Little
,
W. A.
,
1984
, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
,
24
(
8
), pp.
415
420
.10.1016/0011-2275(84)90015-8
24.
Yu
,
D.
,
Warrington
,
R.
,
Barron
,
R.
, and
Ameel
,
T.
,
1995
, “
Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of the 1995 ASME/JSME Thermal Engineering Joint Conference
(Part 1 of 4),
Mar. 19–24
, ASME,
New York
, pp.
523
530
.
25.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
, pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
26.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
,
2003
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.10.1080/01457630304069
27.
Choquette
,
S. F.
,
Faghri
,
M.
,
Kenyon
,
E. J.
, and
Sunden
,
B.
,
1996
, “
Compressible Fluid Flow in Micron Sized Channels
,”
Proceedings of the 1996 31st ASME National Heat Transfer Conference
(Part 5 of 8),
Aug. 3–6
, ASME,
New York
, pp.
25
32
.
28.
Lin
,
T.-Y.
, and
Kandlikar
,
S. G.
,
2012
, “
A Theoretical Model for Axial Heat Conduction Effects During Single-Phase Flow in Microchannels
,”
ASME J. Heat Transfer
,
134
(
2
), p. 020902.10.1115/1.4004936
29.
Celata
,
G. P.
,
Cumo
,
M.
,
McPhail
,
S.
, and
Zummo
,
G.
,
2006
, “
Characterization of Fluid Dynamic Behaviour and Channel Wall Effects in Microtube
,”
Int. J. Heat Fluid Flow
,
27
, pp.
135
143
.10.1016/j.ijheatfluidflow.2005.03.012
You do not currently have access to this content.