A mathematical model predicting heat transfer and film thickness in thin-film region is developed herein. Utilizing dimensionless analysis, analytical solutions have been obtained for heat flux distribution, total heat transfer rate per unit length, location of the maximum heat flux and ratio of conduction thermal resistance to convection thermal resistance in the evaporating film region. These analytical solutions show that the maximum dimensionless heat flux is constant which is independent of the superheat. Maximum total heat transfer rate is determined for a given film region. The ratio of conduction thermal resistance to convection thermal resistance is a function of dimensionless film thickness. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region.

References

References
1.
Potash
,
M.
, and
Wayner
,
P. C.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1851
1863
.10.1016/0017-9310(72)90058-0
2.
Derjaguin
,
B. V.
, and
Zorin
,
Z. M.
,
1956
, “
Optical Study of the Absorption and Surface Condensation of Vapors in the Vicinity of Saturation on a Smooth Surface
,”
Proceedings of 2nd International Congress on Surface Activity
, Vol.
2
, pp.
145
152
.
3.
Moosman
,
S.
, and
Homsy
,
G. M.
,
1980
, “
Evaporating Menisci of Wetting Fluids
,”
J. Colloid Interface Sci.
,
73
(
1
), pp.
212
223
.10.1016/0021-9797(80)90138-1
4.
Holm
,
F. W.
, and
Goplen
,
S. P.
,
1979
, “
Heat Transfer in the Meniscus Thin_film Transition Region
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
543
547
.10.1115/1.3451025
5.
Mirzamoghadam
,
A.
, and
Catton
,
I.
,
1988
, “
A Physical Model of the Evaporating Meniscus
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
201
207
.10.1115/1.3250452
6.
Burelbach
,
J. P.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
,
1988
, “
Nonlinear Stability of Evaporating/Condensing Liquid Films
,”
J. Fluid Mech.
,
195
, pp.
463
494
.10.1017/S0022112088002484
7.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1993
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.10.1016/0017-9310(92)90276-X
8.
Wayner
,
P. C.
,
Kao
,
Y. K.
, and
LaCroix
,
L. V.
,
1976
, “
The Interline Heat Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
(
3
), pp.
487
492
.10.1016/0017-9310(76)90161-7
9.
Schonberg
,
J. A.
, and
Wayner
,
P. C.
, Jr.
,
1992
, “
Analytical Solution for the Integral Contact Line Evaporative Heat Sink
,”
AIAA J. Thermophys. Heat Transfer
,
6
(
1
), pp.
128
134
.10.2514/3.327
10.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1998
, “
Disjoining Pressure Effect on the Wetting Characteristics in a Capillary Tube
,”
Microscale Thermophys. Eng.
,
2
(
4
), pp.
283
297
.10.1080/108939598199928
11.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
AIAA J. Thermophys. Heat Transfer
,
11
(
1
), pp.
90
97
.10.2514/2.6205
12.
Hanlon
,
M. A.
, and
Ma
,
H. B.
,
2003
, “
Evaporation Heat Transfer in Sintered Porous Media
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
644
652
.10.1115/1.1560145
13.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Effects of Film Evaporation and Condensation on Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
133
(
4
), p.
042901
.10.1115/1.4002780
14.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin_film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
15.
Wayner
,
P. C.
,
Kao
,
Y. K.
,
LaCroix
,
L.V.
,
1976
, “
The Interline Heat Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
, pp.
487
492
.10.1016/0017-9310(76)90161-7
You do not currently have access to this content.