The present investigation is concerned with the role of second-order slip in the mixed convection through a long heated vertical planar microchannel with asymmetric wall temperatures. The fully developed solutions of fields and the corresponding characteristics are analytically derived on the basis of second-order Maxwell–Smoluchowski–Burnett (MSB) slip/jump boundary conditions. Results reveal that second-order slip has an appreciable effect on the flow but a negligible effect on the heat transfer. The effect is to raise the gas motion speeds near the heated walls and to enlarge the pressure gradient required to drive the flow. It then leads to the reduction of local flow drag, except for the case where a reversed flow region exists. The second-order effect could be magnified by increasing the mixed convection number, the ratio of the Grashof number to the Reynolds number.

References

References
1.
Schaaf
,
S. A.
, and
Chambré
,
P. L.
,
1961
,
Flow of Rarefied Gases
,
Princeton University Press
,
Princeton, NJ
.
2.
Beskok
,
A.
2001
,
“Validation of a New Velocity-Slip Model for Separated Gas Microflows,”
Numer. Heat Transfer B
,
40
, pp.
451
471
.10.1080/104077901753306593
3.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
2002
, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
, pp.
765
773
.10.1016/S0017-9310(01)00201-0
4.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
,
2006
,
“Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature,”
Int. J. Therm. Sci.
,
45
, pp.
870
881
.10.1016/j.ijthermalsci.2005.12.008
5.
Shojaeian
,
M.
, and
Dibaji
,
S. A. R.
,
2010
, “
Three-Dimensional Numerical Simulation of the Slip Flow Through Triangular Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
324
329
.10.1016/j.icheatmasstransfer.2009.09.006
6.
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2010
,
“Viscous Dissipation and Rarefaction Effects on Laminar Forced Convection in Microchannels,”
ASME J. Heat Transfer
,
132
, p.
072401
.10.1115/1.4001100
7.
Chen
,
C. K.
, and
Weng
,
H. C.
,
2005
,
“Natural Convection in a Vertical Microchannel,”
ASME J. Heat Transfer
,
127
, pp.
1053
1056
.10.1115/1.1999651
8.
Haddad
,
O. M.
,
Abuzaid
,
M. M.
, and
Al-Nimr
,
M. A.
,
2005
,
“Developing Free-Convection Gas Flow in a Vertical Open-Ended Microchannel Filled With Porous Media,”
Numer. Heat Transfer A
,
48
, pp.
693
710
.10.1080/10407780590968006
9.
Biswal
,
L.
,
Som
,
S. K.
, and
Chakraborty
,
S.
,
2007
,
“Effects of Entrance Region Transport Processes on Free Convection Slip Flow in Vertical Microchannels With Isothermally Heated Walls,”
Int. J. Heat Mass Transfer
,
50
, pp.
1248
1254
.10.1016/j.ijheatmasstransfer.2006.09.025
10.
Chen
,
C. K.
, and
Weng
,
H. C.
,
2006
,
“Developing Natural Convection With Thermal Creep in a Vertical Microchannel,”
J. Phys. D
,
39
, pp.
3107
3118
.10.1088/0022-3727/39/14/034
11.
Chakraborty
,
S.
,
Som
,
S. K.
, and
Rahul
,
2008
, “
A Boundary Layer Analysis for Entrance Region Heat Transfer in Vertical Microchannels Within the Slip Flow Regime
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3245
3250
.10.1016/j.ijheatmasstransfer.2008.01.019
12.
Weng
,
H. C.
, and
Chen
,
C. K.
,
2008
,
“Variable Physical Properties in Natural Convective Gas Microflow,”
ASME J. Heat Transfer
,
130
, p.
082401
.10.1115/1.2927400
13.
Weng
,
H. C.
, and
Chen
,
C. K.
,
2009
,
“Drag Reduction and Heat Transfer Enhancement Over a Heated Wall of a Vertical Annular Microchannel,”
Int. J. Heat Mass Transfer
,
52
, pp.
1075
1079
.10.1016/j.ijheatmasstransfer.2008.06.022
14.
Weng
,
H. C.
, and
Chen
,
C. K.
,
2008
,
“On the Importance of Thermal Creep in Natural Convective Gas Microflow With Wall Heat Fluxes,”
J. Phys. D
,
41
, p.
115501
.10.1088/0022-3727/41/11/115501
15.
Buonomo
,
B.
, and
Manca
,
O.
,
2010
,
“Natural Convection Slip Flow in a Vertical Microchannel Heated at Uniform Heat Flux,”
Int. J. Therm. Sci.
,
49
, pp.
1333
1344
.10.1016/j.ijthermalsci.2010.03.005
16.
Avci
,
M.
, and
Aydin
,
O.
,
2007
,
“Mixed Convection in a Vertical Parallel Plate Microchannel,”
ASME J. Heat Transfer
,
129
, pp.
162
166
.10.1115/1.2422741
17.
Avci
,
M.
, and
Aydin
,
O.
,
2007
,
“Mixed Convection in a Vertical Parallel Plate Microchannel With Asymmetric Wall Heat Fluxes,”
ASME J. Heat Transfer
,
129
, pp.
1091
1095
.10.1115/1.2737483
18.
Avci
,
M.
, and
Aydin
,
O.
,
2009
,
“Mixed Convection in a Vertical Microannulus Between Two Concentric Microtubes,”
ASME J. Heat Transfer
,
131
, p.
014502
.10.1115/1.2977552
19.
Weng
,
H. C.
, and
Jian
,
S. J.
,
2012
,
“Developing Mixed Convection in a Vertical Microchannel,”
Adv. Sci. Lett.
,
9
, pp.
908
913
.
20.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
,
“Gaseous Slip Flow in Long Microchannels,”
J. Microelectromech. Syst.
,
6
, pp.
167
178
.10.1109/84.585795
21.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
,
“A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales,”
Microscale Thermophys. Eng.
,
3
, pp.
43
77
.10.1080/108939599199864
22.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I.
, and
Méolans
,
J. G.
,
2007
,
“Mass Flow Rate Measurements in a Microchannel, From Hydrodynamic to Near Free Molecular Regimes,”
J. Fluid Mech.
,
584
, pp.
337
356
.10.1017/S0022112007006374
23.
Weng
,
H. C.
, and
Chen
,
C. K.
,
2008
,
“A Challenge in Navier–Stokes-Based Continuum Modeling: Maxwell–Burnett Slip Law,”
Phys. Fluids
,
20
, p.
106101
.10.1063/1.2998451
24.
Perrier
,
P.
,
Graur
,
I. A.
,
Ewart
,
T.
, and
Meolans
,
J. G.
,
2011
,
“Mass Flow Rate Measurements in Microtubes: From Hydrodynamic to Near Free Molecular Regime,”
Phys. Fluids
,
23
, p.
042004
.10.1063/1.3562948
25.
Weng
,
H. C.
,
2006
,
“Gas Transport Phenomena in Microfluidic Systems,”
Ph.D. thesis,
Department of Mechanical Engineering, National Cheng Kung University
,
Taiwan
.
26.
Surana
,
K. S.
,
Allu
,
S.
,
Tenpas
,
P. W.
, and
Reddy
,
J. N.
,
2007
,
“k-Version of Finite Element Method in Gas Dynamics: Higher-Order Global Differentiability Numerical Solutions,”
Int. J. Numer. Meth. Eng
,
69
, pp.
1109
1157
.10.1002/nme.1801
You do not currently have access to this content.