The laminar conjugate conduction-natural convection heat transfer in a cubic enclosure of finite thickness conductive walls and central cavity filled with fluid is comprehensively studied by using recently developed high accuracy temporal-spatial multidomain pseudospectral method. The enclosure is assumed to have one sidewall submitted to time-periodic pulsating temperature and the opposing sidewall constant temperature, and the top, bottom and two lateral sidewalls are adiabatic. The present study is devoted to explore the fluid mechanics and heat transfer mechanisms of the time-periodic conjugate conduction-natural convection in the enclosure, with particular highlights on the heat transfer resonance and back heat transfer phenomena, the perturbation propagation patterns and the three-dimensional characteristics. The computations are performed for wide ranges of controlling parameters of engineering significance, i.e., the dimensionless wall thickness 0 ≤ s ≤ 0.10, the solid–fluid thermal conductivity ratio 10 ≤ k ≤ 50 and diffusivity ratio 0.001 ≤ a ≤ 0.1, and the sidewall temperature pulsating period 1 ≤ P ≤ 103. Numerical results reveal that the time-periodic fluid flow and conjugate heat transfer performances of the enclosure system are greatly affected by the conductive walls and complexly dependent on the controlling parameters. The thickness and thermophysical properties of the conductive walls, together with the pulsating period of the sidewall temperature, govern the sidewall temperature disturbance propagation patterns (amplitude, phase position and speed) within the enclosure. The heat transfer resonance only appears in cases of large diffusivity ratio, but the variation of period-averaged heat transfer rate with respect to the pulsating period is quite different from that of the zero wall thickness enclosure. The back heat transfer exists in region close to the corners formed by either the top or bottom walls and the enclosure hot sidewall, and the former is more remarkable in both scale and duration and is gradually disappearing as the pulsating period increases.

References

References
1.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
, pp.
249
264
.10.1002/fld.1650030305
2.
Mallinson
,
G. D.
, and
de Vahl Davis
,
G.
,
1977
, “
Three-Dimensional Natural Convection in a Box: A Numerical Study
,”
J. Fluid Mech.
,
83
, pp.
1
31
.10.1017/S0022112077001013
3.
Lage
,
J. L.
, and
Bejan
,
A.
,
1993
, “
The Resonance of Natural Convection in an Enclosure Heated Periodically From the Side
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2027
2038
.10.1016/S0017-9310(05)80134-6
4.
Kazmierczak
,
M.
, and
Chinoda
,
Z.
,
1992
, “
Buoyancy-Driven Flow in an Enclosure With Time Periodic Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1507
1518
.10.1016/0017-9310(92)90040-Y
5.
Kwak
,
H. S.
, and
Hyun
,
J. M.
,
1996
, “
Natural Convection in an Enclosure Having a Vertical Sidewall With Time-Varying Temperature
,”
J. Fluid Mech.
,
329
, pp.
65
88
.10.1017/S0022112096008828
6.
Kwak
,
H. S.
,
Kuwahara
,
K.
, and
Hyun
,
J. M.
,
1998
, “
Resonant Enhancement of Natural Convection Heat Transfer in a Square Enclosure
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2837
2846
.10.1016/S0017-9310(98)00018-0
7.
Xia
,
Q.
,
Yang
,
K. T.
, and
Mukutmoni
,
D.
,
1995
, “
Effect of Imposed Wall Temperature Oscillations on the Stability of Natural Convection in a Square Enclosure
,”
ASME J. Heat Transfer
,
117
, pp.
113
120
.10.1115/1.2822289
8.
Abourida
,
B.
,
Hasnaoui
,
M.
, and
Douamna
,
S.
,
1999
, “
Transient Natural Convection in a Square Enclosure With Horizontal Walls Submitted to Periodic Temperatures
,”
Numer. Heat Transfer A
,
36
, pp.
737
750
.10.1080/104077899274543
9.
Bae
,
J. H.
,
Hyun
,
J. M.
, and
Kwak
,
H. S.
,
2001
, “
Buoyant Convection in a Cavity With a Baffle Under Time-Periodic Wall Temperature
,”
Numer. Heat Transfer A
,
39
, pp.
723
736
.10.1080/10407780152032857
10.
Liu
,
D.
,
Zhao
,
F. Y.
, and
Tang
,
G. F.
,
2008
, “
Conjugate Heat Transfer in an Enclosure With a Centered Conducting Body Imposed Sinusoidal Temperature Profiles on One Side
,”
Numer. Heat Transfer A
,
53
, pp.
204
223
.10.1080/10407780701454030
11.
Kalabin
,
E. V.
,
Kanashina
,
M. V.
, and
Zubkov
,
P. T.
,
2005
, “
Heat Transfer From the Cold Wall of a Square Cavity to the Hot One by Oscillatory Natural Convection
,”
Numer. Heat Transfer A
,
47
, pp.
609
619
.10.1080/10407780590911567
12.
Kalabin
,
E. V.
,
Kanashina
,
M. V.
, and
Zubkov
,
P. T.
,
2005
, “
Natural-Convective Heat Transfer in a Square Cavity With Time-Varying Side-Wall Temperature
,”
Numer. Heat Transfer A
,
47
, pp.
621
631
.10.1080/10407780590896853
13.
Cheikh
,
N. B.
,
Beya
,
B. B.
, and
Lili
,
T.
,
2007
, “
Aspect Ratio Effect on Natural Convection Flow in a Cavity Submitted to a Periodical Temperature Boundary
,”
ASME J. Heat Transfer
,
129
, pp.
1060
1068
.10.1115/1.2728908
14.
Ayachi
,
R. E.
,
Raji
,
A.
,
Hasnaoui
,
M.
, and
Bahlaoui
,
A.
,
2008
, “
Combined Effect of Radiation and Natural Convection in a Square Cavity Differentially Heated With a Periodic Temperature
,”
Numer. Heat Transfer A
,
53
, pp.
1339
1356
.10.1080/10407780801960043
15.
Kim
,
K. H.
, and
Hyun
,
J. M.
,
2004
, “
Buoyant Convection in a Cubical Enclosure Under Time-Periodic Magnetizing Force
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5211
5218
.10.1016/j.ijheatmasstransfer.2004.06.015
16.
Nithyadevi
,
N.
,
Kandaswamy
,
P.
, and
Malliga Sundari
,
S.
,
2009
, “
Magnetoconvection in a Square Cavity With Partially Active Vertical Walls: Time Periodic Boundary Condition
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1945
1953
.10.1016/j.ijheatmasstransfer.2008.08.039
17.
Narasimhan
,
A.
, and
Reddy
,
B. V. K.
,
2011
, “
Resonance of Natural Convection Inside a Bidisperse Porous Medium Enclosure
,”
ASME J. Heat Transfer
,
133
, p.
042601
.10.1115/1.4001316
18.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2010
, “
Periodic Natural Convection in a Nanofluid-Filled Enclosure With Oscillating Heat Flux
,”
Int. J. Therm. Sci.
,
49
, pp.
1
9
.10.1016/j.ijthermalsci.2009.07.020
19.
Wang
,
Q. W.
,
Yang
,
J.
,
Zeng
,
M.
, and
Wang
,
G.
,
2010
, “
Three-Dimensional Numerical Study of Natural Convection in an Inclined Porous Cavity With Time Sinusoidal Oscillating Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
31
, pp.
70
82
.10.1016/j.ijheatfluidflow.2009.11.005
20.
Zhang
,
W.
,
Zhang
,
C. H.
, and
Xi
,
G.
,
2011
, “
Conjugate Conduction-Natural Convection in an Enclosure With Time-Periodic Sidewall Temperature and Inclination
,”
Int. J. Heat Fluid Flow
,
32
, pp.
52
64
.10.1016/j.ijheatfluidflow.2010.08.006
21.
Zhang
,
W.
,
Xi
,
G.
,
Zhang
,
C. H.
, and
Huang
,
Z.
,
2011
, “
A High Accuracy Temporal-Spatial Pseudospectral Method for Time-Periodic Unsteady Fluid Flow and Heat Transfer Problems
,”
Int. J. Comput. Fluid Dyn.
,
25
, pp.
191
206
.10.1080/10618562.2011.575369
22.
Zhang
,
C. H.
,
Zhang
,
W.
, and
Xi
,
G.
,
2010
, “
A Pseudospectral Multidomain Method for Conjugate Conduction-Convection in Enclosures
,”
Numer. Heat Transfer B
,
57
, pp.
260
282
.10.1080/10407790.2010.489880
23.
Peyret
,
R.
,
2002
,
Spectral Methods for Incompressible Viscous Flow
,
Springer
,
New York
.
24.
Misra
,
D.
, and
Sarkar
,
A.
,
1997
, “
Finite Element Analysis of Conjugate Natural Convection in a Square Enclosure With a Conducting Vertical Wall
,”
Comput. Methods Appl. Mech. Eng
,
141
, pp.
205
219
.10.1016/S0045-7825(96)01109-7
25.
Zhang
,
W.
,
Huang
,
Z.
,
Zhang
,
C. H.
, and
Xi
,
G.
,
2012
, “
Conjugate Wall Conduction-Fluid Natural Convection in a Three-Dimensional Inclined Enclosure
,”
Numer. Heat Transfer A
,
61
, pp.
122
141
.10.1080/10407782.2012.638509
You do not currently have access to this content.