The experimental heat transfer rates from a supersonic two-phase impinging air jet with disperse droplets are presented. The experimental configuration consists of an expanding disperse mixture of air and water through a converging–diverging nozzle, designed for Mach 3.26 with a liquid to air mass flow ratio ranging from 1.28% to 3.83%, impinging upon a thin film heater constructed of nichrome. The spatially varying heat transfer coefficient is measured, and peak values are on the order of 200,000W/m2K. Two distinct regions of heat transfer are identified, one dominated by the jet impingement flow and another dominated by thin film heat transfer. The heat transfer coefficient of an impinging jet with dry air and no droplets is measured during the investigation as well. The heat transfer results are compared, and it is demonstrated that the addition of disperse water droplets to the jet significantly increases the heat removal capability of the jet as well as smoothing the spatial temperature distribution of the heater surface. As much as an order of magnitude increase in heat transfer coefficient is observed near the centerline of the jet and a factor of 3–5 increase is seen at a distance of approximately 4 nozzle diameters from the jet. The fundamental heat transfer coefficient measurements should benefit applications involving supersonic two-phase jets for high heat flux thermal management.

References

References
1.
Lienhard
,
J. H., V
,
1995
, “
Liquid Jet Impingement
,”
Annual Review of Heat Transfer
, Vol.
6
,
C. L.
Tien
, ed.,
Begell House
,
New York
, pp.
199
270
.
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
, Vol.
13
,
Academic Press, Inc.
,
New York
, pp.
1
60
.
3.
Donaldson
,
C. D.
, and
Snedeker
,
R. S.
,
1971
, “
A Study of Free Jet Impingement. Part 1. Mean Properties of Free and Impinging Jets
,”
J. Fluid Mech.
,
45
(
2
), pp.
281
319
.10.1017/S0022112071000053
4.
Donaldson
,
C. D.
,
Snedeker
,
R. S.
, and
Margolis
,
D. P.
,
1971
, “
A Study of Free Jet Impingement. Part 2. Free Jet Turbulent Structure and Impingement Heat Transfer
,”
J. Fluid Mech.
,
45
(
3
), pp.
477
512
.10.1017/S0022112071000156
5.
Yu
,
M. S.
,
Kim
,
B. G.
, and
Cho
,
H. H.
,
2005
, “
Heat Transfer on Flat Surface Impinged by an Underexpanded Sonic Jet
,”
J. Thermophys. Heat Transfer
,
19
(
4
), pp.
448
454
.10.2514/1.14324
6.
Rahimi
,
M.
,
Owen
,
I.
, and
Mistry
,
J.
,
2003
, “
Impingement Heat Transfer in an Under-Expanded Axisymmetric Air Jet
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
263
272
.10.1016/S0017-9310(02)00275-2
7.
Baonga
,
J.
,
Louahlia-Gualous
,
H.
, and
Imbert
,
M.
,
2006
, “
Experimental Study of the Hydrodynamic and Heat Transfer of Free Liquid Jet Impinging a Flat Circular Heated Disk
,”
Appl. Therm. Eng.
,
26
(
11-12
), pp.
1125
1138
.10.1016/j.applthermaleng.2005.11.001
8.
Liu
,
X.
, and
Lienhard
,
J. H., V
,
1989
, “
Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface
,”
Heat Transfer Phenomena in Radiation, Combustion and Fires
,
R. K.
Shah
,
ASME HTD
,
New York
, Vol.
106
, pp.
523
530
.
9.
Oh
,
C. H.
,
Lienhard
,
J. H., V
,
Younis
,
H. F.
,
Dahbura
,
R. S.
, and
Michels
,
D.
,
1998
, “
Liquid Jet-Array Cooling Modules for High Heat Fluxes
,”
AIChE J.
,
44
(
4
), pp.
769
779
.10.1002/aic.690440402
10.
Klausner
,
J. F.
,
Mei
,
R.
,
Near
,
S.
, and
Stith
,
R.
,
1998
, “
Two-Phase Jet Impingement for Non-Volatile Residue Removal
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
212
, pp.
271
279
.10.1243/0954408981529475
11.
Gardon
,
R.
, and
Cobonpue
,
J.
,
1963
, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,”
International Developments in Heat Transfer
,
ASME
,
New York
, pp.
454
460
.
12.
Liu
,
X.
,
Lienhard
,
J. H., V
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
,
113
, pp.
571
582
.10.1115/1.2910604
13.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
1
, pp.
3
8
.
14.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Including Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
,
210
, pp.
307
357
.10.1098/rsta.1911.0009
15.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
, pp.
299
361
.10.1098/rsta.1927.0008
16.
Carling
,
J. C.
, and
Hunt
,
B. L.
,
1974
, “
The Near Wall Jet of a Normally Impinging, Uniform, Axisymmetric, Supersonic Jet
,”
J. Fluid Mech.
,
66
(
1
), pp.
159
176
.10.1017/S0022112074000127
17.
Gummer
,
J. H.
, and
Hunt
,
B. L.
,
1971
, “
The Impingement of a Uniform, Axisymmetric, Supersonic Jet on a Perpendicular Flat Plate
,”
Aeronaut. Q.
,
22
, pp.
403
420
.
18.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.10.1063/1.1461829
19.
Alvi
,
F. S.
,
Bower
,
W. W.
, and
Ladd
,
J. A.
,
2002
, “
Experimental and Computational Investigation of Supersonic Impinging Jets
,”
AIAA J.
,
40
(
4
), pp.
599
609
.10.2514/2.1709
20.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2004
, “
A Leidenfrost Point Model for Impinging Droplets and Sprays
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
272
278
.10.1115/1.1652045
21.
Heymann
,
F. J.
,
1969
, “
High-Speed Impact Between a Liquid Drop and a Solid Surface
,”
J. Appl. Phys.
,
40
(
13
), pp.
5113
5122
.10.1063/1.1657361
22.
Engel
,
O. G.
,
1955
, “
Waterdrop Collisions With Solid Surfaces
,”
J. Res. Natl. Bur. Stand.
,
54
(
5
), pp.
281
298
. 10.6028/jres.054.033
23.
Engel
,
O. G.
,
1960
, “
Note on Particle Velocity in Collisions Between Liquid Drops and Solids
,”
J. Res. Natl. Bur. Stand., Sect. A
,
64A
(
6
), pp.
497
498
. 10.6028/jres.064A.048
You do not currently have access to this content.